ترغب بنشر مسار تعليمي؟ اضغط هنا

Near Infrared Observations of a Redshift 5.34 Galaxy: Further Evidence for Dust Absorption in the Early Universe

36   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Armus




اسأل ChatGPT حول البحث

Imaging at 1.25 and 2.20 microns has been obtained of the field containing the galaxy (RD1) found at redshift 5.34 by Dey et al.(1998). This galaxy has been detected at 1.25 microns, while the lower redshift (z=4.02) galaxy also found in the same field by Dey et al. was detected at both 1.25 and 2.20 microns. Comparison to stellar population synthesis models indicates that if RD1 is a young (< 100 Myr old) galaxy, significant reddening (A(V) > 0.5 mag) is indicated. Combined with observations of other high redshift systems, these data show that dust is likely to be an important component of young galaxies even at redshifts of z > 5. The extinction-corrected monochromatic luminosity of RD1 at 1500 angstroms is then a factor of about three larger than L(1500)* as determined by Dickinson (1998) for z ~ 3 starburst galaxies. The implied star formation rate in RD1, corrected for extinction, is ~ 50-100 solar masses per year.

قيم البحث

اقرأ أيضاً

35 - B.T. Soifer 1998
Near-infrared imaging and spectroscopy have been obtained of the gravitationally lensed galaxy at z=4.92 discovered in HST images by Franx et al. (1997). Images at 1.2, 1.6 and 2.2 microns show the same arc morphology as the HST images. The spectrum with resolution lambda / Deltalambda ~ 70 shows no emission lines with equivalent width stronger than 100 A in the rest frame wavelength range 0.34 to 0.40 microns. In particular, [OII]3727 A and [NeIII]3869 A are not seen. The energy distribution is quite blue, as expected for a young stellar population with the observed Ly alpha flux. The spectral energy distribution can be fit satisfactorily for such a young stellar population when absorption by dust is included. The models imply a reddening 0.1 mag < E(B-V) < 0.4 mag. The stellar mass of the lensed galaxy lies in the range of 2 to 16 x 10^9 Msun. This is significantly higher than estimates based on the HST data alone. Our data imply that absorption by dust is important to redshifts of ~5.
We have measured the rest-frame B,V, and I-band light curves of a high-redshift type Ia supernova (SN Ia), SN 1999Q (z=0.46), using HST and ground-based near-infrared detectors. A goal of this study is the measurement of the color excess, E_{B-I}, which is a sensitive indicator of interstellar or intergalactic dust which could affect recent cosmological measurements from high-redshift SNe Ia. Our observations disfavor a 30% opacity of SN Ia visual light by dust as an alternative to an accelerating Universe. This statement applies to both Galactic-type dust (rejected at the 3.4 sigma confidence level) and greyer dust (grain size > 0.1 microns; rejected at the 2.3 to 2.6 sigma confidence level) as proposed by Aguirre (1999). The rest-frame $I$-band light cur ve shows the secondary maximum a month after B maximum typical of nearby SNe Ia of normal luminosi ty, providing no indication of evolution as a function of redshift out to z~0.5. A n expanded set of similar observations could improve the constraints on any contribution of extragalactic dust to the dimming of high-redshift SNe Ia.
Na I D lines in the spectrum of the young binary KH 15D have been analyzed in detail. We find an excess absorption component that may be attributed to foreground interstellar absorption, and to gas possibly associated with the solids in the circumbin ary disk. The derived column density is log N_NaI = 12.5 cm^-2, centered on a radial velocity that is consistent with the systemic velocity. Subtracting the likely contribution of the ISM leaves log N_NaI ~ 12.3 cm^-2. There is no detectable change in the gas column density across the knife edge formed by the opaque grain disk, indicating that the gas and solids have very different scale heights, with the solids being highly settled. Our data support a picture of this circumbinary disk as being composed of a very thin particulate grain layer composed of millimeter-sized or larger objects that are settled within whatever remaining gas may be present. This phase of disk evolution has been hypothesized to exist as a prelude to the formation of planetesimals through gravitational fragmentation, and is expected to be short-lived if much gas were still present in such a disk. Our analysis also reveals the presence of excess Na I emission relative to the comparison spectrum at the radial velocity of the currently visible star that plausibly arises within the magnetosphere of this still-accreting young star.
105 - E. Di Carlo 2007
In the framework of a program for the monitoring of Supernovae in the Near-Infrared (NIR) carried out by the Teramo, Rome and Pulkovo observatories with the AZT-24 telescope, we observed the Supernova SN2006jc in the J,H,K photometric bands during a period of 7 months, starting ~36 days after its discovery. Our observations evidence a NIR re-brightening, peaking ~70 days after discovery, along with a reddening of H-K and J-H colors until 120 days from discovery. After that date, J-H seems to evolve towards bluer colors. Our data, complemented by IR, optical, UV and X-ray observations found in the literature, show that the re-brightening is produced by hot dust surrounding the supernova, formed in the interaction of the ejecta with dense circumstellar matter.
We report near-infrared and optical follow-up observations of the afterglow of the Gamma-Ray Burst 000418 starting 2.5 days after the occurrence of the burst and extending over nearly seven weeks. GRB 000418 represents the second case for which the a fterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K=4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا