ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared observations of the type Ib Supernova SN2006jc: evidence of interactions with dust

104   0   0.0 ( 0 )
 نشر من قبل Elisa Di Carlo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Di Carlo




اسأل ChatGPT حول البحث

In the framework of a program for the monitoring of Supernovae in the Near-Infrared (NIR) carried out by the Teramo, Rome and Pulkovo observatories with the AZT-24 telescope, we observed the Supernova SN2006jc in the J,H,K photometric bands during a period of 7 months, starting ~36 days after its discovery. Our observations evidence a NIR re-brightening, peaking ~70 days after discovery, along with a reddening of H-K and J-H colors until 120 days from discovery. After that date, J-H seems to evolve towards bluer colors. Our data, complemented by IR, optical, UV and X-ray observations found in the literature, show that the re-brightening is produced by hot dust surrounding the supernova, formed in the interaction of the ejecta with dense circumstellar matter.

قيم البحث

اقرأ أيضاً

39 - I. Sakon , T. Wada , Y. Ohyama 2007
We present our latest results on near- to mid- infrared observation of SN2006jc at 200 days after the discovery using the Infrared Camera (IRC) on board $AKARI$. The near-infrared (2--5$mu$m) spectrum of SN2006jc is obtained for the first time and is found to be well interpreted in terms of the thermal emission from amorphous carbon of 800$pm 10$K with the mass of $6.9pm 0.5 times 10^{-5}M_{odot}$ that was formed in the supernova ejecta. This dust mass newly formed in the ejecta of SN 2006jc is in a range similar to those obtained for other several dust forming core collapse supernovae based on recent observations (i.e., $10^{-3}$--$10^{-5}$$M_{odot}$). Mid-infrared photometric data with {it{AKARI}}/IRC MIR-S/S7, S9W, and S11 bands have shown excess emission over the thermal emission by hot amorphous carbon of 800K. This mid-infrared excess emission is likely to be accounted for by the emission from warm amorphous carbon dust of 320$pm 10$K with the mass of 2.7$^{+0.7}_{-0.5} times 10^{-3}M_{odot}$ rather than by the band emission of astronomical silicate and/or silica grains. This warm amorphous carbon dust is expected to have been formed in the mass loss wind associated with the Wolf-Rayet stellar activity before the SN explosion. Our result suggests that a significant amount of dust is condensed in the mass loss wind prior to the SN explosion. A possible contribution of emission bands by precursory SiO molecules in 7.5--9.5$mu$m is also suggested.
We main goal of this paper is to test whether the NIR peak magnitudes of SNe Ia could be accurately estimated with only a single observation obtained close to maximum light, provided the time of B band maximum and the optical stretch parameter are kn own. We obtained multi-epoch UBVRI and single-epoch J and H photometric observations of 16 SNe Ia in the redshift range z=0.037-0.183, doubling the leverage of the current SN Ia NIR Hubble diagram and the number of SNe beyond redshift 0.04. This sample was analyzed together with 102 NIR and 458 optical light curves (LCs) of normal SNe Ia from the literature. The analysis of 45 well-sampled NIR LCs shows that a single template accurately describes them if its time axis is stretched with the optical stretch parameter. This allows us to estimate the NIR peak magnitudes even with one observation obtained within 10 days from B-band maximum. We find that the NIR Hubble residuals show weak correlation with DM_15 and E(B-V), and for the first time we report a possible dependence on the J_max-H_max color. The intrinsic NIR luminosity scatter of SNe Ia is estimated to be around 0.10 mag, which is smaller than what can be derived for a similarly heterogeneous sample at optical wavelengths. In conclusion, we find that SNe Ia are at least as good standard candles in the NIR as in the optical. We showed that it is feasible to extended the NIR SN Ia Hubble diagram to z=0.2 with very modest sampling of the NIR LCs, if complemented by well-sampled optical LCs. Our results suggest that the most efficient way to extend the NIR Hubble diagram to high redshift would be to obtain a single observation close to the NIR maximum. (abridged)
Supernova (SN) 2017cbv in NGC 5643 is one of a handful of type Ia supernovae (SNe~Ia) reported to have excess blue emission at early times. This paper presents extensive $BVRIYJHK_s$-band light curves of SN 2017cbv, covering the phase from $-16$ to $ +125$ days relative to $B$-band maximum light. SN 2017cbv reached a $B$-band maximum of 11.710$pm$0.006~mag, with a post-maximum magnitude decline $Delta m_{15}(B)$=0.990$pm$0.013 mag. The supernova suffered no host reddening based on Phillips intrinsic color, Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus $mu=30.58pm0.05$~mag and assuming $H_0$=72~$rm km s^{-1} Mpc^{-1}$, we found that 0.73~msun $^{56}$Ni was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening-free and distance-free methods via the phases of the secondary maximum of the NIR-band light curves. We also present 14 near-infrared spectra from $-18$ to $+49$~days relative to the $B$-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No $Pa{beta}$ emission feature was detected from our post-maximum NIR spectra, placing a hydrogen mass upper limit of 0.1 $M_{odot}$. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN~Ia, even though its early evolution is marked by a flux excess no seen in most other well-observed normal SNe~Ia. We also compare the exquisite light curves of SN 2017cbv with some $M_{ch}$ DDT models and sub-$M_{ch}$ double detonation models.
We present 39 nights of optical photometry, 34 nights of infrared photometry, and 4 nights of optical spectroscopy of the Type Ia SN 1999ac. This supernova was discovered two weeks before maximum light, and observations were begun shortly thereafter. At early times its spectra resembled the unusual SN 1999aa and were characterized by very high velocities in the Ca II H and K lines, but very low velocities in the Si II 6355 A line. The optical photometry showed a slow rise to peak brightness but, quite peculiarly, was followed by a more rapid decline from maximum. Thus, the B- and V-band light curves cannot be characterized by a single stretch factor. We argue that the best measure of the nature of this object is not the decline rate parameter Delta m_15 (B). The B-V colors were unusual from 30 to 90 days after maximum light in that they evolved to bluer values at a much slower rate than normal Type Ia supernovae. The spectra and bolometric light curve indicate that this event was similar to the spectroscopically peculiar slow decliner SN 1999aa.
We report observations of the Type Iax supernova (SN Iax) 2012Z at optical and near-infrared wavelengths from immediately after the explosion until $sim$ $260$ days after the maximum luminosity using the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) Target-of-Opportunity (ToO) program and the Subaru telescope. We found that the near-infrared (NIR) light curve evolutions and color evolutions are similar to those of SNe Iax 2005hk and 2008ha. The NIR absolute magnitudes ($M_{J}sim-18.1$ mag and $M_{H}sim-18.3$ mag) and the rate of decline of the light curve ($Delta$ $m_{15}$($B$)$=1.6 pm 0.1$ mag) are very similar to those of SN 2005hk ($M_{J}sim-17.7$ mag, $M_{H}sim$$-18.0$ mag, and $Delta$ $m_{15}$($B$)$sim1.6$ mag), yet differ significantly from SNe 2008ha and 2010ae ($M_{J}sim-14 - -15$ mag and $Delta$ $m_{15}$($B$)$sim2.4-2.7$ mag). The estimated rise time is $12.0 pm 3.0$ days, which is significantly shorter than that of SN 2005hk or any other Ia SNe. The rapid rise indicates that the $^{56}$Ni distribution may extend into the outer layer or that the effective opacity may be lower than that in normal SNe Ia. The late-phase spectrum exhibits broader emission lines than those of SN 2005hk by a factor of 6--8. Such high velocities of the emission lines indicate that the density profile of the inner ejecta extends more than that of SN 2005hk. We argue that the most favored explosion scenario is a `failed deflagration model, although the pulsational delayed detonations is not excluded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا