ﻻ يوجد ملخص باللغة العربية
We present a catalogue of absorption lines obtained from the analysis of the ultra-violet spectra of 66 quasars. The data were acquired with the Faint Object Spectrograph of the HST as part of the Quasar Absorption Line Survey, a Key Project for the first four cycles of HST observations. This is the third of a series of catalogues of absorption lines produced from the survey and increases the number of quasars whose higher resolution (R=1300) spectra we have published from 17 to 83. The general properties and execution of the survey are reviewed, including descriptions of the final sample of observed objects and the algorithmic processes used to construct the catalogue. The detection of a single damped Ly-a system in a path length of Delta_z=49 yields an observed number of damped systems per unit redshift of (dN/dz)_{damp}(z=0.58)=0.020 with 95% confidence boundaries of 0.001 to 0.096 systems per unit redshift. We include notes on our analysis of each of the observed quasars and the absorption systems detected in each spectrum. Some especially interesting systems include low redshift Ly-a absorbers suitable for extensive follow-up observations (in the spectra of TON28 and PG1216+069), possibly physically associated pairs of extensive metal line absorption systems (e.g., in the spectrum of PG0117+213), and systems known to be associated with galaxies (e.g., in the spectrum of 3C232).
We present a census of z(abs) < 2, intrinsic (those showing partial coverage) and associated [z(abs) ~ z(em)] quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth ac
Despite extensive efforts, only two quasars have been found at $z>7$ to date due to a combination of low spatial density and high contamination from more ubiquitous Galactic cool dwarfs in quasar selection. This limits our current knowledge of the su
It is difficult to describe in a few pages the numerous specific techniques used to study absorption lines seen in QSO spectra and to review even rapidly the field of research based on their observation and analysis. What follows is therefore a pale
Molecules dominate the cooling function of neutral metal-poor gas at high density. Observation of molecules at high redshift is thus an important tool toward understanding the physical conditions prevailing in collapsing gas. Up to now, detections ar