ﻻ يوجد ملخص باللغة العربية
Observations of the high redshift Universe, interpreted in the context of a new generation of computer simulated model Universes, are providing new insights into the processes by which galaxies and quasars form and evolve, as well as the relationship between the formation of virialized, star-forming systems and the evolution of the intergalactic medium. We describe our recent measurements of the star-formation rates, stellar populations, and structure of galaxies and protogalactic fragments at z~2.5, including narrow-band imaging in the near-IR, IR spectroscopy, and deep imaging from the ground and from space, using HST and ISO.
I present a model for the star formation properties of z~2 starburst galaxies. Here, I discuss models for the formation of high-z Submillimeter Galaxies, as well as the CO-H2 conversion factor for these systems. I then apply these models to literatur
We study the star formation and the mass assembly process of 0.3<=z<2.5 galaxies using their IR emission from MIPS 24um band. We used an updated version of the GOODS-MUSIC catalog, extended by the addition of mid-IR fluxes. We compared two different
We propose that star formation is delayed relative to the inflow rate in rapidly-accreting galaxies at very high redshift (z > 2) because of the energy conveyed by the accreting gas. Accreting gas streams provide fuel for star formation, but they sti
We use the James Clerk Maxwell Telescopes SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we co
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the g