ﻻ يوجد ملخص باللغة العربية
We examine the most recent observational constraints arising from i) small-scale and large-scale Galactic dynamical properties, ii) star counts at faint magnitude and iii) microlensing experiments. From these constraints, we determine the halo and disk stellar mass functions and stellar content down to the bottom of the main sequence, which yields the normalization of the halo/disk total stellar population, and we infer the contributions of sub-stellar objects to the mass budget of the various Galactic regions. The consistent analysis of star counts and of the overall microlensing observations in the Bulge are compatible with a small contribution of brown dwarfs to the Galactic mass budget $rho_{BD}/rho_* leq 0.2 $. However the separate bulge/disk analysis based on the bulge clump giants is compatible with a substantial population of disk brown dwarfs, $Sigma_{BD}/Sigma_*leq 1 $. More statistics of microlensing events towards the Galactic center and a better determination of the velocity dispersions in the bulge should break this degeneracy of solutions. For the halo, we show that a steep mass-function in the dark halo is excluded and that low-mass stars and brown dwarfs represent a negligible fraction of the halo dark matter, and thus of the observed events towards the LMC. The nature of these events remains a puzzle and halo white dwarfs remain the least unlikely candidates.
We use the calculations derived in a previous paper (Mera, Chabrier and Schaeffer, 1997), based on observational constraints arising from star counts, microlensing experiments and kinematic properties, to determine the amount of dark matter under the
Aims. We aim to perform consistent comparisons between observations and simulations on the mass dependence of the galaxy major merger fraction at low redshift over an unprecedentedly wide range of stellar masses (10^9 to 10^12 solar masses). Method
Measuring the proper motions and geometric distances of galaxies within the Local Group is very important for our understanding of the history, present state and future of the Local Group. Currently, proper motion measurements using optical methods a
We used FORS2 in MXU mode to mimic a coarse IFU in order to measure the 3D large-scale kinematics around the central Hydra I cluster galaxy NGC 3311. Our data show that the velocity dispersion field varies as a function of radius and azimuthal angle
Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from white dwarfs to supergiants. The oldest components provide us with uniqu