ﻻ يوجد ملخص باللغة العربية
Measuring the proper motions and geometric distances of galaxies within the Local Group is very important for our understanding of the history, present state and future of the Local Group. Currently, proper motion measurements using optical methods are limited only to the closest companions of the Milky Way. However, Very Long Baseline Interferometry (VLBI) provides the best angular resolution in astronomy and phase-referencing techniques yield astrometric accuracies of ~ 10 micro-arcseconds. This makes a measurement of proper motions and angular rotation rates of galaxies out to a distance of ~ 1 Mpc feasible. This article presents results of VLBI observations of regions of H2O maser activity in the Local Group galaxies M33 and IC10. These measurements promise a new handle on dynamical models for the Local Group and the mass and dark matter halo of Andromeda and the Milky Way. (Abridged)
Key and still largely missing parameters for measuring the mass content and distribution of the Local Group are the proper motion vectors of its member galaxies. The problem when trying to derive the gravitational potential of the Local Group is that
We use a large sample of isolated dark matter halo pairs drawn from cosmological N-body simulations to identify candidate systems whose kinematics match that of the Local Group of Galaxies (LG). We find, in agreement with the timing argument and earl
We examine the most recent observational constraints arising from i) small-scale and large-scale Galactic dynamical properties, ii) star counts at faint magnitude and iii) microlensing experiments. From these constraints, we determine the halo and di
In this paper we identify and study the properties of low mass dwarf satellites of a nearby Local Group analogue - the NGC-3175 galaxy group with the goal of investigating the nature of the lowest mass galaxies and the `Missing Satellites problem. De
Near field cosmology is practiced by studying the Local Group (LG) and its neighbourhood. The present paper describes a framework for simulating the near field on the computer. Assuming the LCDM model as a prior and applying the Bayesian tools of the