ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a kinematic model of the Local Group

57   0   0.0 ( 0 )
 نشر من قبل Andreas Brunthaler
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the proper motions and geometric distances of galaxies within the Local Group is very important for our understanding of the history, present state and future of the Local Group. Currently, proper motion measurements using optical methods are limited only to the closest companions of the Milky Way. However, Very Long Baseline Interferometry (VLBI) provides the best angular resolution in astronomy and phase-referencing techniques yield astrometric accuracies of ~ 10 micro-arcseconds. This makes a measurement of proper motions and angular rotation rates of galaxies out to a distance of ~ 1 Mpc feasible. This article presents results of VLBI observations of regions of H2O maser activity in the Local Group galaxies M33 and IC10. These measurements promise a new handle on dynamical models for the Local Group and the mass and dark matter halo of Andromeda and the Milky Way. (Abridged)

قيم البحث

اقرأ أيضاً

78 - A. Brunthaler 2002
Key and still largely missing parameters for measuring the mass content and distribution of the Local Group are the proper motion vectors of its member galaxies. The problem when trying to derive the gravitational potential of the Local Group is that usually only radial velocities are known, and hence statistical approaches have to be used. The expected proper motions for galaxies within the Local Group, ranging from 20 to 100 $mu$as/yr, are detectable with VLBI using the phase-referencing technique. We present phase-referencing observations of bright masers in IC~10 and M33 with respect to background quasars. We observed the H$_2$O masers in IC10 three times over a period of two months to check the accuracy of the relative positions. The relative positions were obtained by modeling the interferometer phase data for the maser sources referenced to the background quasars. The model allowed for a relative position shift for the source and a single vertical atmospheric delay error in the correlator model for each antenna. The rms of the relative positions for the three observations is only 0.01 mas, which is approximately the expected position error due to thermal noise. Also, we present a method to measure the geometric distance to M33. This will allow re-calibration of the extragalactic distance scale based on Cepheids. The method is to measure the relative proper motions of two H$_2$O maser sources on opposite sides of M33. The measured angular rotation rate, coupled with other measurements of the inclination and rotation speed of the galaxy, yields a direct distance measurement.
We use a large sample of isolated dark matter halo pairs drawn from cosmological N-body simulations to identify candidate systems whose kinematics match that of the Local Group of Galaxies (LG). We find, in agreement with the timing argument and earl ier work, that the separation and approach velocity of the Milky Way (MW) and Andromeda (M31) galaxies favour a total mass for the pair of $sim 5times 10^{12} ,M_{odot}$. A mass this large, however, is difficult to reconcile with the small relative tangential velocity of the pair, as well as with the small deceleration from the Hubble flow observed for the most distant LG members. Halo pairs that match these three criteria have average masses a factor of $sim 2$ times smaller than suggested by the timing argument, but with large dispersion. Guided by these results, we have selected $12$ halo pairs with total mass in the range $1.6$-$3.6 times 10^{12},M_{odot}$ for the APOSTLE project (A Project Of Simulating The Local Environment), a suite of hydrodynamical resimulations at various numerical resolution levels (reaching up to $sim10^{4},M_{odot}$ per gas particle) that use the subgrid physics developed for the EAGLE project. These simulations reproduce, by construction, the main kinematics of the MW-M31 pair, and produce satellite populations whose overall number, luminosities, and kinematics are in good agreement with observations of the MW and M31 companions. The APOSTLE candidate systems thus provide an excellent testbed to confront directly many of the predictions of the $Lambda$CDM cosmology with observations of our local Universe.
43 - D. Mera 1998
We examine the most recent observational constraints arising from i) small-scale and large-scale Galactic dynamical properties, ii) star counts at faint magnitude and iii) microlensing experiments. From these constraints, we determine the halo and di sk stellar mass functions and stellar content down to the bottom of the main sequence, which yields the normalization of the halo/disk total stellar population, and we infer the contributions of sub-stellar objects to the mass budget of the various Galactic regions. The consistent analysis of star counts and of the overall microlensing observations in the Bulge are compatible with a small contribution of brown dwarfs to the Galactic mass budget $rho_{BD}/rho_* leq 0.2 $. However the separate bulge/disk analysis based on the bulge clump giants is compatible with a substantial population of disk brown dwarfs, $Sigma_{BD}/Sigma_*leq 1 $. More statistics of microlensing events towards the Galactic center and a better determination of the velocity dispersions in the bulge should break this degeneracy of solutions. For the halo, we show that a steep mass-function in the dark halo is excluded and that low-mass stars and brown dwarfs represent a negligible fraction of the halo dark matter, and thus of the observed events towards the LMC. The nature of these events remains a puzzle and halo white dwarfs remain the least unlikely candidates.
In this paper we identify and study the properties of low mass dwarf satellites of a nearby Local Group analogue - the NGC-3175 galaxy group with the goal of investigating the nature of the lowest mass galaxies and the `Missing Satellites problem. De ep imaging of nearby groups such as NGC-3175 are one of the only ways to probe these low mass galaxies which are important for problems in cosmology, dark matter and galaxy formation. We discover 553 candidate dwarf galaxies in the group, the vast majority of which have never been studied before. We obtained R and B band imaging, with the ESO 2.2m, around the central $sim$500kpc region of NGC-3175, allowing us to detect galaxies down to $sim$23 mag (M$_{B} sim$-7.7 mag) in the B band. In the absence of spectroscopic information, dwarf members and likely background galaxies are separated using colour, morphology and surface brightness criteria. We compare the observed size, surface brightness and mass scaling relations to literature data. The luminosity function with a faint end slope of $alpha$ = -1.31, is steeper than that observed in the Local Group. In comparison with simulations, we find that our observations are between a pure $Lambda$CDM model and one involving baryonic effects, removing the apparent problem of finding too few satellites as seen around the Milky Way.
Near field cosmology is practiced by studying the Local Group (LG) and its neighbourhood. The present paper describes a framework for simulating the near field on the computer. Assuming the LCDM model as a prior and applying the Bayesian tools of the Wiener filter (WF) and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the LCDM scenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of halos must obey specific isolation, mass and separation criteria. At the second level the orbital angular momentum and energy are constrained and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG factory enables the construction of a large ensemble of simulated LGs. Suitable candidates for high resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا