We compare the independent FIRAS and DIRBE observations from the COBE in the wavelength range 100-300 microns. This cross calibration provides checks of both data sets. The results show that the data sets are consistent within the estimated gain and offset uncertainties of the two instruments. They show the possibility of improving the gain and offset determination of DIRBE at 140 and 240 microns.
Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for CMB measurements, for improving the accuracy with which the contributions of different foregrou
nd emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 millimeters to 100 microns and compare the quality of the fits. We consider the two-level systems model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anticorrelation between emissivity index and dust temperature. We consider the model of Finkbeiner, Davis, and Schlegel because it has been widely used for CMB studies, and the generalized version of this model recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the two-level systems model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.
New determinations are presented of the cosmic infrared background monopole brightness in the Planck HFI bands from 100 GHz to 857 GHz. Planck was not designed to measure the monopole component of sky brightness, so cross-correlation of the 2015 HFI
maps with COBE/FIRAS data is used to recalibrate the zero level of the HFI maps. For the HFI 545 and 857 GHz maps, the brightness scale is also recalibrated. Correlation of the recalibrated HFI maps with a linear combination of Galactic H I and H alpha data is used to separate the Galactic foreground emission and determine the cosmic infrared background brightness in each of the HFI bands. We obtain CIB values of 0.007 +- 0.014, 0.010 +- 0.019, 0.060 +- 0.023, 0.149 +- 0.017, 0.371 +- 0.018, and 0.576 +- 0.034 MJy/sr at 100, 143, 217, 353, 545, and 857 GHz, respectively. The estimated uncertainties for the 353 to 857 GHz bands are about 3 to 6 times smaller than those of previous direct CIB determinations at these frequencies. Our results are compared with integrated source brightness results from selected recent submillimeter and millimeter wavelength imaging surveys.
Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of
the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H-alpha Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into H I and H-alpha correlated components and a residual component. We find the H-alpha correlated component to be consistent with zero for each region, and we find that addition of an H-alpha correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2 sigma upper limits are essentially the same as those derived by Hauser et al. and are given by nu I_nu (nW m-2 sr-1) < 75, < 32, 25 +- 8, and 13 +- 3 at 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. We derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H-alpha intensity as a tracer of far infrared emission.
We report observation of isotropic interplanetary dust (IPD) by analyzing the infrared (IR) maps of Diffuse Infrared Background Experiment (DIRBE) onboard the Cosmic Background Explorer (COBE) spacecraft. To search for the isotropic IPD, we perform n
ew analysis in terms of solar elongation angle ($epsilon$), because we expect zodiacal light (ZL) intensity from the isotropic IPD to decrease as a function of $epsilon$. We use the DIRBE weekly-averaged maps covering $64^circ lesssim epsilon lesssim 124^circ$ and inspect the $epsilon$-dependence of residual intensity after subtracting conventional ZL components. We find the $epsilon$-dependence of the residuals, indicating the presence of the isotropic IPD. However, the mid-IR $epsilon$-dependence is different from that of the isotropic IPD model at $epsilon gtrsim 90^circ$, where the residual intensity increases as a function of $epsilon$. To explain the observed $epsilon$-dependence, we assume a spheroidal IPD cloud showing higher density further away from the sun. We estimate intensity of the near-IR extragalactic background light (EBL) by subtracting the spheroidal component, assuming the spectral energy distribution from the residual brightness at $12,{rm mu m}$. The EBL intensity is derived as $45_{-8}^{+11}$, $21_{-4}^{+3}$, and $15pm3,{rm nWm^{-2}sr^{-1}}$ at $1.25$, $2.2$, and $3.5,{rm mu m}$, respectively. The EBL is still a few times larger than integrated light of normal galaxies, suggesting existence of unaccounted extragalactic sources.
Using all-sky maps obtained with COBE/DIRBE, we reanalyzed the diffuse sky brightness at 1.25 and 2.2 um, which consists of zodiacal light, diffuse Galactic light (DGL), integrated starlight (ISL), and isotropic emission including the extragalactic b
ackground light. Our new analysis including an improved estimate of the DGL and the ISL with the 2MASS data showed that deviations of the isotropic emission from isotropy were less than 10% in the entire sky at high Galactic latitude (|b|>35). The result of our analysis revealed a significantly large isotropic component at 1.25 and 2.2 um with intensities of 60.15 +/- 16.14 and 27.68 +/- 6.21 nWm-2sr-1, respectively. This intensity is larger than the integrated galaxy light, upper limits from gamma-ray observation, and potential contribution from exotic sources (i.e., Population III stars, intrahalo light, direct collapse black holes, and dark stars). We therefore conclude that the excess light may originate from the local universe; the Milky Way and/or the solar system.