ﻻ يوجد ملخص باللغة العربية
We report observation of isotropic interplanetary dust (IPD) by analyzing the infrared (IR) maps of Diffuse Infrared Background Experiment (DIRBE) onboard the Cosmic Background Explorer (COBE) spacecraft. To search for the isotropic IPD, we perform new analysis in terms of solar elongation angle ($epsilon$), because we expect zodiacal light (ZL) intensity from the isotropic IPD to decrease as a function of $epsilon$. We use the DIRBE weekly-averaged maps covering $64^circ lesssim epsilon lesssim 124^circ$ and inspect the $epsilon$-dependence of residual intensity after subtracting conventional ZL components. We find the $epsilon$-dependence of the residuals, indicating the presence of the isotropic IPD. However, the mid-IR $epsilon$-dependence is different from that of the isotropic IPD model at $epsilon gtrsim 90^circ$, where the residual intensity increases as a function of $epsilon$. To explain the observed $epsilon$-dependence, we assume a spheroidal IPD cloud showing higher density further away from the sun. We estimate intensity of the near-IR extragalactic background light (EBL) by subtracting the spheroidal component, assuming the spectral energy distribution from the residual brightness at $12,{rm mu m}$. The EBL intensity is derived as $45_{-8}^{+11}$, $21_{-4}^{+3}$, and $15pm3,{rm nWm^{-2}sr^{-1}}$ at $1.25$, $2.2$, and $3.5,{rm mu m}$, respectively. The EBL is still a few times larger than integrated light of normal galaxies, suggesting existence of unaccounted extragalactic sources.
The COBE Diffuse Infrared Background Experiment (DIRBE) was designed to search for the cosmic infrared background (CIB) radiation. Scattered light and thermal emission from the interplanetary dust (IPD) are major contributors to the diffuse sky brigh
Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for CMB measurements, for improving the accuracy with which the contributions of different foregrou
We reanalyze data of near-infrared background taken by Infrared Telescope in Space (IRTS) based on up-to-date observational results of zodiacal light, integrated star light and diffuse Galactic light. We confirm the existence of residual isotropic em
Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of
Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed