ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the lensing galaxy in HE 1104-1805

65   0   0.0 ( 0 )
 نشر من قبل Frederic Courbin
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Courbin




اسأل ChatGPT حول البحث

We report on deep IR imaging of the double quasar HE 1104-1805. A new image deconvolution technique has been applied to the data in order to optimally combine the numerous frames obtained. The resulting J and K images allow us to detect and study the lensing galaxy between the two lensed QSO images. The near infrared images not only confirm the lensed nature of this double quasar, but also support the previous redshift estimate of z=1.66 for the lensing galaxy. No obvious overdensity of galaxies is detected in the immediate region surrounding the lens, down to limiting magnitudes of J=22 and K=20. The geometry of the system, together with the time delays expected for this lensed quasar, make HE 1104-1805 a remarkable target for future photometric monitoring programs, for the study of microlensing and for the determination of the cosmological parameters in the IR and optical domains.

قيم البحث

اقرأ أيضاً

The gravitationally lensed quasar HE 1104-1805 has been observed at a variety of wavelengths ranging from the mid-infrared to X-ray for nearly 20 years. We combine flux ratios from the literature, including recent Chandra data, with new observations from the SMARTS telescope and HST, and use them to investigate the spatial structure of the central regions using a Bayesian Monte Carlo analysis of the microlensing variability. The wide wavelength coverage allows us to constrain not only the accretion disk half-light radius r_1/2, but the power-law slope xi of the size-wavelength relation r_1/2 ~ lambda^xi. With a logarithmic prior on the source size, the (observed-frame) R-band half-light radius log(r_1/2/cm) is 16.0+0.3-0.4, and the slope xi is 1.0+0.30-0.56. We put upper limits on the source size in soft (0.4-1.2 keV) and hard (1.2-8 keV) X-ray bands, finding 95% upper limits on log (r_1/2/cm) of 15.33 in both bands. A linear prior yields somewhat larger sizes, particularly in the X-ray bands. For comparison, the gravitational radius, using a black hole mass estimated using the Hbeta line, is log(r_g/cm) = 13.94. We find that the accretion disk is probably close to face-on, with cos i = 1.0 being four times more likely than cos i = 0.5. We also find probability distributions for the mean mass of the stars in the foreground lensing galaxy, the direction of the transverse peculiar velocity of the lens, and the position angle of the projected accretion disks major axis (if not face-on).
We present results of the long term monitoring of the gravitationally lensed quasar HE1104-1805. The photometric data were collected between August 1997 and January 2002 as a subproject of the OGLE survey. We determine the time delay in the light c urves of images A and B of HE1104-1805 to be equal to 157+/-21 days with the variability in the image B light curve leading variability of the image A. The result is in excellent agreement with the earlier determination by Ofek and Maoz. OGLE photometry of HE1104-1805 is available to the astronomical community from the OGLE Internet archive.
The weak gravitational lensing effect, small coherent distortions of galaxy images by means of a gravitational tidal field, can be used to study the relation between the matter and galaxy distribution. In this context, weak lensing has so far only be en used for considering a second-order correlation function that relates the matter density and galaxy number density as a function of separation. We implement two new, third-order correlation functions that have recently been suggested in the literature, and apply them to the Red-Sequence Cluster Survey. We demonstrate that it is possible, even with already existing data, to make significant measurements of third-order lensing correlations. We develop an optimised computer code for the correlation functions. To test its reliability a set of tests are performed. The correlation functions are transformed to aperture statistics, which allow easy tests for remaining systematics in the data. In order to further verify the robustness of our measurement, the signal is shown to vanish when randomising the source ellipticities. Finally, the lensing signal is compared to crude predictions based on the halo-model. On angular scales between roughly 1 arcmin and 11 arcmin a significant third-order correlation between two lens positions and one source ellipticity is found. We discuss this correlation function as a novel tool to study the average matter environment of pairs of galaxies. Correlating two source ellipticities and one lens position yields a less significant but nevertheless detectable signal on a scale of 4 arcmin. Both signals lie roughly within the range expected by theory which supports their cosmological origin.[ABRIDGED]
Magnification changes the observed number counts of galaxies on the sky. This biases the observed tangential shear profiles around galaxies, the so-called galaxy-galaxy lensing (GGL) signal, and the related excess mass profile. Correspondingly, infer ence of physical quantities, such as the mean mass profile of halos around galaxies, are affected by magnification effects. We use simulated shear and galaxy data of the Millennium Simulation to quantify the effect on shear and mass estimates from magnified lens and source number counts. The former are due to the large-scale matter distribution in the foreground of the lenses, the latter are caused by magnification of the source population by the matter associated with the lenses. The GGL signal is calculated from the simulations by an efficient fast-Fourier transform that can also be applied to real data. The numerical treatment is complemented by a leading-order analytical description of the magnification effects, which is shown to fit the numerical shear data well. We find the magnification effect is strongest for steep galaxy luminosity functions and high redshifts. For a lens redshift of $z_mathrm{d}=0.83$, a limiting magnitude of $22,mathrm{mag}$ in the $r$-band and a source redshift of $z_mathrm{s}=0.99$, we find that a magnification correction changes the shear profile up to $45%$ and the mass is biased by up to $55 %$. For medium-redshift galaxies the relative change in shear and mass is typically a few percent. As expected, the sign of the bias depends on the local slope of the lens luminosity function $alpha_mathrm{d}$, where the mass is biased low for $alpha_mathrm{d}<1$ and biased high for $alpha_mathrm{d}>1$. Whereas the magnification effect of sources is rarely than more $1%$, the statistical power of future weak lensing surveys warrants correction for this effect.
136 - M. Maturi 2004
We construct a linear filter optimised for detecting dark-matter halos in weak-lensing data. The filter assumes a mean radial profile of the halo shear pattern and modifies that shape by the noise power spectrum. Aiming at separating dark-matter halo s from spurious peaks caused by large-scale structure lensing, we model the noise as being composed of weak lensing by large-scale structures and Poisson noise from random galaxy positions and intrinsic ellipticities. Optimal filtering against the noise requires the optimal filter scale to be smaller than typical halo sizes. Although a perfect separation of halos from spurious large-scale structure peaks is strictly impossible, we use numerical simulations to demonstrate that our filter produces substantially more sensitive, reliable and stable results than the conventionally used aperture-mass statistic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا