ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersonic motions in dark clouds are not Alfven waves

230   0   0.0 ( 0 )
 نشر من قبل Paolo Padoan
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supersonic random motions are observed in dark clouds and are traditionally interpreted as Alfv{e}n waves, but the possibility that these motions are super-Alfvenic has not been ruled out. In this work we report the results of numerical experiments in two opposite regimes: beta ~1 and beta << 1, where beta is the ratio of gas pressure and magnetic pressure: beta=P_g/P_m. Our results, combined with observational tests, show that the model with beta ~ 1 is consistent with the observed properties of molecular clouds, while the model with beta << 1 has several properties that are in conflict with the observations. We also find that both the density and the magnetic field in molecular clouds may be very intermittent. The statistical distributions of magnetic field and gas density are related by a power law, with an index that decreases with time. Magnetically dominated cores form early in the evolution, while later on the intermittency in the density field wins out.



قيم البحث

اقرأ أيضاً

88 - Jin Koda 2005
New 13CO data from the BU-FCRAO Milky Way Galactic Ring Survey (GRS) are analyzed to understand the shape and internal motions of molecular clouds. For a sample of more than five hundred molecular clouds, we find that they are preferentially elongate d along the Galactic plane. On the other hand, their spin axes are randomly oriented. We therefore conclude that the elongation is not supported by internal spin but by internal velocity anisotropy. It has been known that some driving mechanisms are necessary to sustain the supersonic velocity dispersion within molecular clouds. The mechanism for generating the velocity dispersion must also account for the preferred elongation. This excludes some driving mechanisms, such as stellar winds and supernovae, because they do not produce the systemic elongation along the Galactic plane. Driving energy is more likely to come from large scale motions, such as the Galactic rotation.
384 - S. Feng , H. Beuther , Q. Zhang 2016
The dense, cold regions where high-mass stars form are poorly characterised, yet they represent an ideal opportunity to learn more about the initial conditions of high-mass star formation (HMSF), since high-mass starless cores (HMSCs) lack the violen t feedback seen at later evolutionary stages. We present continuum maps obtained from the Submillimeter Array (SMA) interferometry at 1.1 mm for four infrared dark clouds (IRDCs, G28.34S, IRDC 18530, IRDC 18306, and IRDC 18308). We also present 1 mm/3 mm line surveys using IRAM 30 m single-dish observations. Our results are: (1) At a spatial resolution of 10^4 AU, the 1.1 mm SMA observations resolve each source into several fragments. The mass of each fragment is on average >10 Msun, which exceeds the predicted thermal Jeans mass of the whole clump by a factor of up to 30, indicating that thermal pressure does not dominate the fragmentation process. Our measured velocity dispersions in the 30 m lines imply that non-thermal motions provides the extra support against gravity in the fragments. (2) Both non-detection of high-J transitions and the hyperfine multiplet fit of N2H+(1-0), C2H(1-0), HCN(1-0), and H13CN(1-0) indicate that our sources are cold and young. However, obvious detection of SiO and the asymmetric line profile of HCO+(1-0) in G28.34S indicate a potential protostellar object and probable infall motion. (3) With a large number of N-bearing species, the existence of carbon rings and molecular ions, and the anti-correlated spatial distributions between N2H+/NH2D and CO, our large-scale high-mass clumps exhibit similar chemical features as small-scale low-mass prestellar objects. This study of a small sample of IRDCs illustrates that thermal Jeans instability alone cannot explain the fragmentation of the clump into cold (~15 K), dense (>10^5 cm-3) cores and that these IRDCs are not completely quiescent.
136 - D. B. Jess 2009
We report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodici ties ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfven waves produced by a torsional twist of +/-22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfven oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposi tion from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.
498 - Russell K. Standish 2013
Anthropic reasoning is a form of statistical reasoning based upon finding oneself a member of a particular reference class of conscious beings. By considering empirical distribution functions defined over animal life on Earth, we can deduce that the vast bulk of animal life is unlikely to be conscious.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا