ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-Ray Absorption at High Redshifts and the Gamma-Ray Background

55   0   0.0 ( 0 )
 نشر من قبل Floyd Stecker
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. W. Stecker




اسأل ChatGPT حول البحث

We present results of a calculation of absorption of 10-500 GeV gamma-rays at high redshifts. This calculation requires the determination of the high- redshift evolution of the full spectral energy distribution of the intergalactic photon field. For this, we have primarily followed the recent analysis of Fall, Charlot and Pei. We give our results for the gamma-ray opacity as a function of redshift out to a redshift of 3. We then give predicted gamma-ray spectra for selected blazars and also extend our results on the background from unresolved blazars to an energy of 500 GeV. Absorption effects are predicted to significantly steepen the background spectrum above 20 GeV. Our absorption calculations can be used to place limits on the redshifts of gamma-ray bursts. Our background calculations can be used to determine the observability of multi-GeV lines from dark matter neutralino particles.



قيم البحث

اقرأ أيضاً

GRBs are now detected up to z = 8.26 . We try to find differences, in their restframe properties, which could be related either to distance or to observing conditions.
It is known that the soft tail of the gamma-ray bursts spectra show excesses from the exact power-law dependence. In this article we show that this departure can be detected in the peak flux ratios of different BATSE DISCSC energy channels. This effe ct allows to estimate the redshift of the bright long gamma-ray bursts in the BATSE Catalog. A verification of these redshifts is obtained for the 8 GRB which have both BATSE DISCSC data and measured optical spectroscopic redshifts. There is good correlation between the measured and esti redshifts, and the average error is $Delta z approx 0.33$. The method is similar to the photometric redshift estimation of galaxies in the optical range, hence it can be called as gamma photometric redshift estimation. The estimated redshifts for the long bright gamma-ray bursts are up to $z simeq 4$. For the the faint long bursts - which should be up to $z simeq 20$ - the redshifts cannot be determined unambiguously with this method.
174 - A. M. Chen , Y. D. Guo , Y. W. Yu 2021
High-mass gamma-ray binaries consist of a presumptive pulsar in orbit with a massive star. The intense outflows from the star can absorb radio emission from the pulsar, making the detection of pulsation difficult. In this work, we present the basic g eometry and formulae that describe the absorption process of a pulsar in binary with an O/B star and apply our model to two typical and well-studied binaries: PSR~B1259-63/LS~2883 and LS 5039. We investigate the influences of the equatorial disc of LS 2883 with different orientations on the dispersion measure and free-free absorption of the radio pulsation from PSR B1259-63. The observed data are consistent with the disc inserted on the orbital plane with a relatively large inclination angle. For LS 5039, due to its tight orbit, it was believed that the strong wind absorption makes detecting radio emissions from the putative pulsar unlikely. However, considering the wind interaction and orbital motion, a bow shock cavity and a Coriolis shock would be formed, thereby allowing the pulsations to partially avoid stellar outflow absorption. We investigate the dependence of the radio optical depth on the observing frequencies, the orbital inclination angle, and the wind parameters. We suppose that the presumptive pulsar in LS 5039 is similar to PSR B1259-63 with pulsed emission extending to several tens of gigahertz. In that case, there could be a transparent window for radio pulsations when the pulsar is moving around the inferior conjunction. The following deep monitoring of LS 5039 and other systems by radio telescopes at high radio frequencies might reveal the nature of compact objects in the future. Alternatively, even a null detection could still provide further constraints on the properties of the putative pulsar and stellar outflows.
In the redshift range z = 0-1, the gamma ray burst (GRB) redshift distribution should increase rapidly because of increasing differential volume sizes and strong evolution in the star formation rate. This feature is not observed in the Swift redshift distribution and to account for this discrepancy, a dominant bias, independent of the Swift sensitivity, is required. Furthermore, despite rapid localization, about 40-50% of Swift and pre-Swift GRBs do not have a measured redshift. We employ a heuristic technique to extract this redshift bias using 66 GRBs localized by Swift with redshifts determined from absorption or emission spectroscopy. For the Swift and HETE+BeppoSAX redshift distributions, the best model fit to the bias in z < 1 implies that if GRB rate evolution follows the SFR, the bias cancels this rate increase. We find that the same bias is affecting both Swift and HETE+BeppoSAX measurements similarly in z < 1. Using a bias model constrained at a 98% KS probability, we find that 72% of GRBs in z < 2 will not have measurable redshifts and about 55% in z > 2. To achieve this high KS probability requires increasing the GRB rate density in small z compared to the high-z rate. This provides further evidence for a low-luminosity population of GRBs that are observed in only a small volume because of their faintness.
Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observ ed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. We present EBL calculations both based on multiwavelength observations of thousands of galaxies and also based on semi-analytic models, and show that they are consistent with these lower limits from observed galaxies and with the gamma-ray upper limit constraints. Such comparisons close the loop on cosmological galaxy formation models, since they account for all the light, including that from galaxies too faint to see. We compare our results with those of other recent works, and discuss the implications of these new EBL calculations for gamma ray attenuation. Catching a few GRBs with groundbased atmospheric Cherenkov Telescope (ACT) arrays or water Cherenkov detectors could provide important new constraints on the high-redshift star formation history of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا