ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of the Center-Filled Emission from the Supernova Remnant W44

60   0   0.0 ( 0 )
 نشر من قبل John Hughes
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We have investigated two evolutionary scenarios advanced to explain the centrally-brightened X-ray morphology of the supernova remnant (SNR) W44: (1) a model involving the slow thermal evaporation of clouds engulfed by a supernova blast wave as it propagates though a clumpy interstellar medium (ISM), and (2) a hydrodynamical simulation of a blast wave propagating through a homogeneous ISM, including the effects of radiative cooling. Both models can have their respective parameters tuned to approximate the remnants morphology. The mean temperature of the hot plasma in W44 (~0.9 keV) as determined by our nonequilibrium ionization X-ray spectral analysis provides the essential key to discriminate between these scenarios. Based on the size (using the well established distance of 3 kpc) and temperature of W44, the dynamical evolution predicted by the cloud evaporation model gives an age for the SNR of merely 6500 yr. We argue that, because this age is inconsistent with the characteristic age (approx. 20000 yr) of the associated PSR 1853+01, this model cannot provide the explanation for the center-filled morphology. We favor the radiative-phase shock model since it can reproduce both the morphology and age of W44 assuming reasonable values for the initial explosion energy in the range 0.7E51 to 0.9E51 ergs and the ambient ISM density of between 3 and 4 cm**-3.



قيم البحث

اقرأ أيضاً

We present the AGILE gamma-ray observations in the energy range 50 MeV - 10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR (20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [SII] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that: (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; (3) the hadron energy spectrum is well described by a power-law (with index s = 3.0 pm 0.1) and a low-energy cut-off at Ec = 6 pm 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.
An xmm observation of the plerionic supernova remnant 3C58 has allowed us to study the X-ray nebula with unprecedented detail. A spatially resolved spectral analysis with a resolution of 8arcsec has yielded a precise determination of the relation bet ween the spectral index and the distance from the center. We do not see any evidence for bright thermal emission from the central core. In contrast with previous ASCA and {em Einstein} results, we derive an upper limit to the black-body 0.5-10 keV luminosity and emitting area of $1.8times 10^{32}$ ergsec and $1.3times 10^{10}$ cm$^2$, respectively, ruling out emission from the hot surface of the putative neutron star and also excluding the outer-gap model for hot polar caps. We have performed for the first time a spectral analysis of the outer regions of the X-ray nebula, where most of the emission is still non-thermal, but where the addition of a soft (kT=0.2-0.3 keV) optically thin plasma component is required to fit the spectrum at $E<1$ keV. This component provides 6% of the whole remnant observed flux in the 0.5-10.0 keV band. We show that a Sedov interpretation is incompatible with the SN1181-3C58 association, unless there is a strong deviation from electron-ion energy equipartition, and that an origin of this thermal emission in terms of the expansion of the nebula into the ejecta core nicely fits all the radio and X-ray observations.
The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral co ntinuum below 200 MeV which can be attributed to neutral pion emission. Confirming the hadronic origin of the gamma-ray emission near 100 MeV is then of the greatest importance. Our paper is focused on a global re-assessment of all available data and models of particle acceleration in W44, with the goal of determining on a firm ground the hadronic and leptonic contributions to the overall spectrum. We also present new gamma-ray and CO NANTEN2 data on W44, and compare them with recently published AGILE and Fermi data. Our analysis strengthens previous studies and observations of the W44 complex environment and provides new information for a more detailed modeling. In particular, we determine that the average gas density of the regions emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3). The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and supported by strong evidence. It implies a relatively large value for the average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field amplification by shock-driven turbulence. Our new analysis establishes that the spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1 at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss hadronic versus leptonic-only models of emission taking into account simultaneously radio and gamma-ray data. We find that the leptonic models are disfavored by the combination of radio and gamma-ray data. Having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed.
Supernova remnants (SNRs) are widely considered to be sites of Galactic cosmic ray (CR) acceleration. Vela is one of the nearest Galactic composite SNRs to Earth accompanied by the Vela pulsar and its pulsar wind nebula (PWN) Vela X. The Vela SNR is one of the most studied remnants and it benefits from precise estimates of various physical parameters such as distance and age. Therefore, it is a perfect object for a detailed study of physical processes in SNRs. The Vela SNR expands into the highly inhomogeneous cloudy interstellar medium (ISM) and its dynamics is determined by the heating and evaporation of ISM clouds. It features an asymmetrical X-ray morphology which is explained by the expansion into two media with different densities. This could occur if the progenitor of the Vela SNR exploded close to the edge of the stellar wind bubble of the nearby Wolf-Rayet star $gamma^2$Velorum and hence one part of the remnant expands into the bubble. The interaction of the ejecta and the main shock of the remnant with ISM clouds causes formation of secondary shocks at which additional particle acceleration takes place. This may lead to the close to uniform distribution of relativistic particles inside the remnant. We calculate the synchrotron radio emission within the framework of the new hydrodynamical model which assumes the supernova explosion at the edge of the stellar wind bubble. The simulated radio emission agrees well with both the total radio flux from the remnant and the complicated radio morphology of the source.
64 - R. L. Shelton , K. D. Kuntz , 2004
As with other mixed morphology remnants, W44s projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. X-ray bright knots dot W44s image. The Chandra data show that the remnants hot, bright projecte d center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. The neon abundance is elevated, suggesting that the center is rich in ejecta. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44s X-ray bright center: 1.) entropy mixing from thermal conduction or bulk mixing, 2.) cloud evaporation, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was found to be a good match to the Chandra spectrum. The bright knots have similar levels of ionization as the surrounding regions, challenging the evaporating clouds model. While both of these models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnants projected center. The preponderance of evidence suggests that W44s remarkable morphology can be attributed to dust destruction and ejecta enrichment within an entropy mixed, adiabatic phase supernova remnant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا