ﻻ يوجد ملخص باللغة العربية
We investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an ``optimistic 15 solar mass precollapse model, which is representative of the class of stars with compact iron cores. This model is evolved through core collapse and bounce in one dimension using multigroup (neutrino-energy--dependent) flux-limited diffusion (MGFLD) neutrino transport and Lagrangian hydrodynamics, providing realistic initial conditions for the postbounce convection and evolution. Our two-dimensional simulation begins at 106 ms after bounce at a time when there is a well-developed gain region, and proceeds for 400 ms. We couple two-dimensional (PPM) hydrodynamics to one-dimensional MGFLD neutrino transport. At 225 ms after bounce we see large-scale convection behind the shock, characterized by high-entropy, mushroom-like, expanding upflows and dense, low-entropy, finger-like downflows. The upflows reach the shock and distort it from sphericity. The radial convection velocities become supersonic just below the shock, reaching magnitudes in excess of 10^9 cm/sec. Eventually, however, the shock recedes to smaller radii, and at about 500 ms after bounce there is no evidence in our simulation of an explosion or of a developing explosion. Failure in our ``optimistic 15 solar mass Newtonian model leads us to conclude that it is unlikely, at least in our approximation, that neutrino-driven convection will lead to explosions for more massive stars with fatter iron cores or in cases in which general relativity is included.
We investigate the criteria for successful core-collapse supernova explosions by the neutrino mechanism. We find that a critical-luminosity/mass-accretion-rate condition distinguishes non-exploding from exploding models in hydrodynamic one-dimensiona
In this paper, we present results from a simulation of stellar core collapse, bounce, and postbounce evolution with Boltzmann neutrino transport. We motivate the development of our Boltzmann solver in light of the sensitivity of the neutrino-heating
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT
Core-collapse supernovae are, despite their spectacular visual display, neutrino events. Virtually all of the 10^53 ergs of gravitational binding energy released in the formation of the nascent neutron star is carried away in the form of neutrinos an
Simulations of core-collapse supernovae (CCSNe) result in successful explosions once the neutrino luminosity exceeds a critical curve, and recent simulations indicate that turbulence further enables explosion by reducing this critical neutrino lumino