ترغب بنشر مسار تعليمي؟ اضغط هنا

A Global Turbulence Model for Neutrino-Driven Convection in Core-Collapse Supernovae

61   0   0.0 ( 0 )
 نشر من قبل Jeremiah Murphy
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulations of core-collapse supernovae (CCSNe) result in successful explosions once the neutrino luminosity exceeds a critical curve, and recent simulations indicate that turbulence further enables explosion by reducing this critical neutrino luminosity. We propose a theoretical framework to derive this result and take the first steps by deriving the governing mean-field equations. Using Reynolds decomposition, we decompose flow variables into background and turbulent flows and derive self-consistent averaged equations for their evolution. As basic requirements for the CCSN problem, these equations naturally incorporate steady-state accretion, neutrino heating and cooling, non-zero entropy gradients, and turbulence terms associated with buoyant driving, redistribution, and dissipation. Furthermore, analysis of two-dimensional (2D) CCSN simulations validate these Reynolds-averaged equations, and we show that the physics of turbulence entirely accounts for the differences between 1D and 2D CCSN simulations. As a prelude to deriving the reduction in the critical luminosity, we identify the turbulent terms that most influence the conditions for explosion. Generically, turbulence equations require closure models, but these closure models depend upon the macroscopic properties of the flow. To derive a closure model that is appropriate for CCSNe, we cull the literature for relevant closure models and compare each with 2D simulations. These models employ local closure approximations and fail to reproduce the global properties of neutrino-driven turbulence. Motivated by the generic failure of these local models, we propose an original model for turbulence which incorporates global properties of the flow. This global model accurately reproduces the turbulence profiles and evolution of 2D CCSN simulations.

قيم البحث

اقرأ أيضاً

Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we inv estigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of $sim!2$, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several percent.
We present our study of OGLE-2014-SN-073, one of the brightest Type II SN ever discovered, with an unusually broad lightcurve combined with high ejecta velocities. From our hydrodynamical modelling we infer a remarkable ejecta mass of $60^{+42}_{-16} $~M$_odot$, and a relatively high explosion energy of $12.4^{+13.0}_{-5.9} times10^{51}$~erg. We show that this object belongs, with a very small number of other hydrogen-rich SNe, to an energy regime that is not explained by standard core-collapse (CC) neutrino-driven explosions. We compare the quantities inferred by the hydrodynamical modelling with the expectations of various exploding scenarios, trying to explain the high energy and luminosity released. We find some qualitative similarities with pair-instabilities SNe, although a prompt injection of energy by a magnetar seems also a viable alternative to explain such extreme event.
226 - E. Abdikamalov 2014
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a $27$-$M_odot$ progenito r star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI dominated evolution. This confirms previous 3D results of Hanke et al. 2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out simulations with resolutions differing by up to a factor of $sim$4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case, since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum $E(ell)$ develops in the heating layer. Like other 3D studies, we find $E(ell) propto ell^{-1}$ in the inertial range, while theory and local simulations argue for $E(ell) propto ell^{-5/3}$. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy containing scale, creating a bottleneck that prevents an efficient turbulent cascade.
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using t he extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong non-radial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
126 - Alexander Summa 2015
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 solar masses, including progenitors recently investigated by other groups. All mo dels develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection time scales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا