ﻻ يوجد ملخص باللغة العربية
Contemporary multidimensional cosmological theories predict different variations of fundamental physical constants in course of the cosmological evolution. On the basis of the QSO spectra analysis, we show that the fine-structure constant alpha=e^2/(hbar c) and the proton-to-electron mass ratio mu=m_p/m_e reveal no statistically significant variation over the last 90% of the lifetime of the Universe. At the 2sigma significance level, the following upper bounds are obtained for the epoch corresponding to the cosmological redshifts z ~ 3 (i.e., ~ 10 Gyr ago): |Deltaalpha/alpha| < 0.00016 and |Deltamu/mu| < 0.00022. The corresponding upper limits to the time-average rates of the constant variations are |dalpha/(alpha dt)| < 1.6times 10^{-14} yr^{-1} and |dmu/(mu dt)| < 2.2times10^{-14} yr^{-1}. These limits serve as criteria for selection of those theoretical models which predict alpha and mu variation with the cosmological time. In addition, we test a possible anisotropy of the high-redshift fine splitting over the celestial sphere, which might reveal a non-equality of alpha values in causally disconnected areas of the Universe.
In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how th
Two dimensionless fundamental physical constants, the fine structure constant $alpha$ and the proton-to-electron mass ratio $frac{m_p}{m_e}$ are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elemen
A new method for measuring a possible time dependence of the fine-structure constant ($alpha$) is proposed. The method is based on the level-crossing in two-electron highly-charged ions facilitating resonance laser measurements of the distance betwee
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar $phi$ with respect to the
The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span