ﻻ يوجد ملخص باللغة العربية
In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational constant, as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the content of the quantum vacuum.
The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuu
Contemporary multidimensional cosmological theories predict different variations of fundamental physical constants in course of the cosmological evolution. On the basis of the QSO spectra analysis, we show that the fine-structure constant alpha=e^2/(
We provide an overview of RBC/UKQCDs charm project on 2+1 flavour physical pion mass ensembles using Mobius Domain Wall Fermions for the light as well as for the charm quark. We discuss the analysis strategy in detail and present results at the diffe
The cosmological constant $Lambda$ is a free parameter in Einsteins equations of gravity. We propose to fix its value with a boundary condition: test particles should be free when outside causal contact, e.g. at infinity. Under this condition, we sho
Two dimensionless fundamental physical constants, the fine structure constant $alpha$ and the proton-to-electron mass ratio $frac{m_p}{m_e}$ are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elemen