ﻻ يوجد ملخص باللغة العربية
A family of triaxial Stackel potential-density pairs is introduced. With the help of a Quadratic Programming method, a linear combination of potential-density pairs of this family which fits a given projected density distribution can be built. This deprojection strategy can be used to model the potentials of triaxial elliptical galaxies with or without dark halos. Besides, we show that the expressions for the Stackel triaxial density and potential are considerably simplified when expressed in terms of divided differences, which are convenient numerically. We present an example of triaxial deprojection for the galaxy NGC~5128 whose photometry follows the de Vaucouleurs law.
We present a grid-based non-parametric approach to obtain a triaxial three-dimensional luminosity density from its surface brightness distribution. Triaxial deprojection is highly degenerate and our approach illustrates the resulting difficulties. Fo
Photometric deprojection is used to determine the stellardisk and bulge parameters for several edgeon galaxies from the FGC catalog. The assumption that the galaxies of our sample belonging to the fourth (i.e., lowest) surfacebrightness class in the
Cuspy triaxial potentials admit a large number of chaotic orbits, which moreover exhibit extreme stickiness that makes the process of chaotic mixing surprisingly inefficient. Environmental effects, modeled as noise and/or periodic driving, help accel
We construct self-consistent dynamical models for disk galaxies with triaxial, cuspy halos. We begin with an equilibrium, axisymmetric, disk-bulge-halo system and apply an artificial acceleration to the halo particles. By design, this acceleration co
This paper investigates chaos and chaotic phase mixing in triaxial Dehnen potentials which have been proposed to describe realistic ellipticals. Earlier work is extended by exploring the effects of (1) variable axis ratios, (2) `graininess associated