ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-parametric Triaxial Deprojection of Elliptical Galaxies

90   0   0.0 ( 0 )
 نشر من قبل Stefano de Nicola
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a grid-based non-parametric approach to obtain a triaxial three-dimensional luminosity density from its surface brightness distribution. Triaxial deprojection is highly degenerate and our approach illustrates the resulting difficulties. Fortunately, for massive elliptical galaxies, many deprojections for a particular line of sight can be discarded, because their projection along other lines of sight does not resemble elliptical galaxies. The near-elliptical isophotes of these objects imply near ellipsoidal intrinsic shapes. In fact, deprojection is unique for densities distributed on ellipsoidal shells. The constrained non-parametric deprojection method we present here relaxes this constraint and assumes that the contours of the luminosity density are boxy/discy ellipsoids with radially varying axis ratios. With this approach we are able to reconstruct the intrinsic triaxial densities of our test models, including one drawn from an $N$-body simulation. The method also allows to compare the relative likelihood of deprojections at different viewing angles. We show that the viewing orientations of individual galaxies with nearly ellipsoidal isophotal shapes can be constrained from photometric data alone.



قيم البحث

اقرأ أيضاً

110 - A. Mathieu , H. Dejonghe 1996
A family of triaxial Stackel potential-density pairs is introduced. With the help of a Quadratic Programming method, a linear combination of potential-density pairs of this family which fits a given projected density distribution can be built. This d eprojection strategy can be used to model the potentials of triaxial elliptical galaxies with or without dark halos. Besides, we show that the expressions for the Stackel triaxial density and potential are considerably simplified when expressed in terms of divided differences, which are convenient numerically. We present an example of triaxial deprojection for the galaxy NGC~5128 whose photometry follows the de Vaucouleurs law.
55 - F. Ruppin , R. Adam , B. Comis 2016
The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large-scale structures. It is essential for a robust calibration of the mass-observable scaling r elations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high resolution $(< 20$ arcsec) thermal Sunyaev-Zeldovich (tSZ) observations by probing the intracluster medium (ICM) of the planck-discovered galaxy cluster psz at redshift $z = 0.61$, using tSZ data obtained with the NIKA camera, which is a dual-band (150 and 260~GHz) instrument operated at the IRAM 30-meter telescope. We deproject jointly NIKA and planck data to extract the electronic pressure distribution from the cluster core ($R sim 0.02, R_{500}$) to its outskirts ($R sim 3, R_{500}$) non-parametrically for the first time at intermediate redshift. The constraints on the resulting pressure profile allow us to reduce the relative uncertainty on the integrated Compton parameter by a factor of two compared to the planck value. Combining the tSZ data and the deprojected electronic density profile from xmm allows us to undertake a hydrostatic mass analysis, for which we study the impact of a spherical model assumption on the total mass estimate. We also investigate the radial temperature and entropy distributions. These data indicate that psz is a massive ($M_{500} sim 5.5 times 10^{14}$ M$_{odot}$) cool-core cluster. This work is part of a pilot study aiming at optimizing the treatment of the NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at intermediate and high redshifts. (abridged)
122 - D. Bizyaev 2000
Photometric deprojection is used to determine the stellardisk and bulge parameters for several edgeon galaxies from the FGC catalog. The assumption that the galaxies of our sample belonging to the fourth (i.e., lowest) surfacebrightness class in the FGC are edgeon, lowsurfacebrightness (LSB) galaxies is considered.
We study whether dry merger-driven size growth of massive elliptical galaxies depends on their initial structural concentration, and analyse the validity of the homology hypothesis for virial mass determination in massive ellipticals grown by dry mer gers. High-resolution simulations of a few realistic merger trees, starting with compact progenitors of different structural concentrations (Sersic indices n), show that galaxy growth has little dependence on the initial Sersic index (larger n leads to slightly larger size growth), and depends more on other particulars of the merger history. We show that the deposition of accreted matter in the outer parts leads to a systematic and predictable breaking of the homology between remnants and progenitors, which we characterize through the evolution, during the course of the merger history, of virial coefficients K = GM/Re sigma^2 associated to the most commonly-used dynamical and stellar mass parameters. The virial coefficient for the luminous mass, K , is about 50 per cent larger at the z = 2 start of the merger evolution than in z = 0 remnants. Ignoring virial evolution leads to biased virial mass estimates. We provide K corresponding to a variety of dynamical and stellar mass parameters, and provide recipes for the dynamical determination of galaxy masses. For massive, non-compact ellipticals, the popular expression M = 5 Re sigma^2 / G underestimates the dynamical mass within the luminous body by factors of up to 4; it instead provides an approximation to the total stellar mass with smaller uncertainty than current stellar population models.
158 - Ortwin Gerhard 2010
Recent progress is summarized on the determination of the density distributions of stars and dark matter, stellar kinematics, and stellar population properties, in the extended, low surface brightness halo regions of elliptical galaxies. With integra l field absorption spectroscopy and with planetary nebulae as tracers, velocity dispersion and rotation profiles have been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the outer edge at ~150 kpc. The results are generally consistent with the known dichotomy of elliptical galaxy types, but some galaxies show more complex rotation profiles in their halos and there is a higher incidence of misalignments, indicating triaxiality. Dynamical models have shown a range of slopes for the total mass profiles, and that the inner dark matter densities in ellipticals are higher than in spiral galaxies, indicating earlier assembly redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals and comparison with dynamical mass determinations indicates that non-thermal components to the pressure may be important in the inner ~10 kpc, and that the properties of these systems are closely related to their group environments. First results on the outer halo stellar population properties do not yet give a clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances indicate longer star formation histories pointing towards late accretion of the halo. This is consistent with independent evidence for on-going accretion, and suggests a connection to the observed size evolution of elliptical galaxies with redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا