ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth of Velocity Dispersions for Collapsing Spherical Stellar Systems

48   0   0.0 ( 0 )
 نشر من قبل Shunsuke Hozumi
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.Hozumi -




اسأل ChatGPT حول البحث

First, we have ensured that spherical nonrotating collisionless systems collapse with almost retaining spherical configurations during initial contraction phases even if they are allowed to collapse three-dimensionally. Next, on the assumption of spherical symmetry, we examine the evolution of velocity dispersions with collapse for the systems which have uniform or power-law density profiles with Maxwellian velocity distributions by integrating the collisionless Boltzmann equation directly. The results show that as far as the initial contraction phases are concerned, the radial velocity dispersion never grows faster than the tangential velocity dispersion except at small radii where the nearly isothermal nature remains, irrespective of the density profiles and virial ratios. This implies that velocity anisotropy as an initial condition should be a poor indicator for the radial orbit instability. The growing behavior of the velocity dispersions is briefly discussed from the viewpoint that phase space density is conserved in collisionless systems.

قيم البحث

اقرأ أيضاً

We present tables of velocity dispersions derived from CALIFA V1200 datacubes using Pipe3D. Four different dispersions are extracted from emission (ionized gas) or absorption (stellar) spectra, with two spatial apertures (5 and 30). Stellar and ioniz ed gas dispersions are not interchangeable and we determine their distinguishing features. We also compare these dispersions with literature values and construct sample scaling relations to further assess their applicability. We consider revised velocity-based scaling relations using the virial velocity parameter S_K^2 = K V_rot^2 + sigma^2 constructed with each of our dispersions. Our search for the strongest linear correlation between S_K and i-band absolute magnitudes favors the common K ~ 0.5, though the range 0.3 - 0.8 is statistically acceptable. The reduction of scatter in our best stellar mass-virial velocity relations over that of a classic luminosity-velocity relation is minimal; this may however reflect the dominance of massive spirals in our sample.
10,000 simulations of 1000-particle realisations of the same cluster are computed by direct force summation. Over three crossing times the original Poisson noise is amplified more than tenfold by self-gravity. The clusters fundamental dipole mode is strongly excited by Poisson noise, and this mode makes a major contribution to driving diffusion of stars in energy. The diffusive flow through action space is computed for the simulations and compared with the predictions of both local-scattering theory and the Balescu-Lenard (BL) equation. The predictions of local-scattering theory are qualitatively wrong because the latter neglects self-gravity. These results imply that local-scattering theory is of little value. Future work on cluster evolution should employ either N-body simulation or the BL equation. However, significant code development will be required to make use of the BL equation practicable.
82 - D. Thomas 2012
We perform a spectroscopic analysis of 492,450 galaxy spectra from the first two years of observations of the Sloan Digital Sky Survey-III/Baryonic Oscillation Spectroscopic Survey (BOSS) collaboration. This data set has been released in the ninth SD SS data release, the first public data release of BOSS spectra. We show that the typical signal-to-noise ratio of BOSS spectra is sufficient to measure stellar velocity dispersion and emission line fluxes for individual objects. The typical velocity dispersion of a BOSS galaxy is 240 km/s, with an accuracy of better than 30 per cent for 93 per cent of BOSS galaxies. The distribution in velocity dispersion is redshift independent between redshifts 0.15 and 0.7, which reflects the survey design targeting massive galaxies with an approximately uniform mass distribution in this redshift interval. The majority of BOSS galaxies lack detectable emission lines. We analyse the emission line properties and present diagnostic diagrams using the emission lines [OII], Hbeta, [OIII], Halpha, and [NII] (detected in about 4 per cent of the galaxies). We show that the emission line properties are strongly redshift dependent and that there is a clear correlation between observed frame colours and emission line properties. Within in the low-z sample around 0.15<z<0.3, half of the emission-line galaxies have LINER-like emission line ratios, followed by Seyfert-AGN dominated spectra, and only a small fraction of a few per cent are purely star forming galaxies. AGN and LINER-like objects, instead, are less prevalent in the high-z sample around 0.4<z<0.7, where more than half of the emission line objects are star forming. This is a pure selection effect caused by the non-detection of weak Hbeta emission lines in the BOSS spectra. Finally, we show that star forming, AGN and emission line free galaxies are well separated in the g-r vs r-i target selection diagram.
We show that the observed upper bound on the line-of-sight velocity dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a simple dynamical origin within the LCDM cosmological model, under two main hypotheses. The first is that mo st of the stars now in the luminous parts of a giant elliptical formed at redshift z>6. Subsequently, the stars behaved dynamically just as an additional component of the dark matter. The second hypothesis is that the mass distribution characteristic of a newly formed dark matter halo forgets such details of the initial conditions as the stellar collisionless matter that was added to the dense parts of earlier generations of halos. We also assume that the stellar velocity dispersion does not evolve much at z<6, because a massive host halo grows mainly by the addition of material at large radii well away from the stellar core of the galaxy. These assumptions lead to a predicted number density of ellipticals as a function of stellar velocity dispersion that is in promising agreement with the Sloan Digital Sky Survey data.
We analyze the local field of stellar tangential velocities for a sample of $42 339$ non-binary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships we determine the solar velocity with respect to the local stars of $(V_X,V_Y,V_Z)=(10.5, 18.5, 7.3)pm 0.1$ kms. The Oorts parameters determined by a straightforward least-squares adjustment in vector spherical harmonics, are $A=14.0pm 1.4$, $B=-13.1pm 1.2$, $K=1.1pm 1.8$, and $C=-2.9pm 1.4$ kmspc. We find a few statistically significant higher degree harmonic terms, which do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at $sim -20$ kmspc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic representing a rigid rotation of the stellar field about the axis $-Y$ pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient $6.2 pm 0.9$ kmspc, and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا