ﻻ يوجد ملخص باللغة العربية
We analyze the local field of stellar tangential velocities for a sample of $42 339$ non-binary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships we determine the solar velocity with respect to the local stars of $(V_X,V_Y,V_Z)=(10.5, 18.5, 7.3)pm 0.1$ kms. The Oorts parameters determined by a straightforward least-squares adjustment in vector spherical harmonics, are $A=14.0pm 1.4$, $B=-13.1pm 1.2$, $K=1.1pm 1.8$, and $C=-2.9pm 1.4$ kmspc. We find a few statistically significant higher degree harmonic terms, which do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at $sim -20$ kmspc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic representing a rigid rotation of the stellar field about the axis $-Y$ pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient $6.2 pm 0.9$ kmspc, and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
We build a family of explicit one-forms on $S^3$ which are shown to form a complete set of eigenmodes for the Laplace-de Rahm operator.
We only see a small fraction of the matter in the universe, but the rest gives itself away by the impact of its gravity. The distortions from pure Hubble flow (or peculiar velocities) that this matter creates have the potential to be a powerful cosmo
Spherical Harmonics, $Y_ell^m(theta,phi)$, are derived and presented (in a Table) for half-odd-integer values of $ell$ and $m$. These functions are eigenfunctions of $L^2$ and $L_z$ written as differential operators in the spherical-polar angles, $th
Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current and divergence free magnetic field solution. This
Bipolar spherical harmonics (BiPoSHs) provide a general formalism for quantifying departures in the cosmic microwave background (CMB) from statistical isotropy (SI) and from Gaussianity. However, prior work has focused only on BiPoSHs with even parit