ترغب بنشر مسار تعليمي؟ اضغط هنا

The Topology of The Cosmic Microwave Background Anisotropy on The Scale 1 degree

124   0   0.0 ( 0 )
 نشر من قبل Lars Lindberg Christensen
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we develop the theory of clusterization of peaks in a Gaussian random field. We have obtained new mathematical results from this theory and the theory of percolation and have proposed a topological method of analysis of sky maps based on these results. We have simulated $10^otimes10^o$ sky maps of the cosmic microwave background anisotropy expected from different cosmological models with $0.5^o-1^o$ resolution in order to demonstrate how this method can be used for detection of non-Gaussian noise in the maps and detection of the Doppler-peak in the spectrum of perturbation of $gD T/T$.



قيم البحث

اقرأ أيضاً

Fluctuations in the brightness of the Earths atmosphere originating from water vapor are an important source of noise for ground-based instruments attempting to measure anisotropy in the Cosmic Microwave Background. This paper presents a model for th e atmospheric fluctuations and derives simple expressions to predict the contribution of the atmosphere to experimental measurements. Data from the South Pole and from the Atacama Desert in Chile, two of the driest places on Earth, are used to assess the level of fluctuations at each site.
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inf lation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l<1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales l>2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.
Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the Cosmic Microwave Background Radiation (CMBR). This instrument chops a 30arcmin beam in a 3 position patt ern with a throw of $pm40arcmin$; the resulting data is analyzed in statistically independent single and double difference datasets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5~icm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100~micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of $0.6 times 10^{-5} < Delta T/T < 2.2 times 10^{-5}$ (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0fdg5, using the single difference demodulation. For the double difference demodulation, the result is $1.1 times 10^{-5} < Delta T/T < 3.1 times 10^{-5}$ (90% CL interval) at a correlation angle of 0fdg3.
130 - K. Coble , M. Dragovan , J. Kovac 1999
Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier- based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully sampled 598 deg^2 of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales. The shape of the observed power spectrum is not a simple linear rise but has a sharply increasing slope starting at l ~ 150.
Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translat ional invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes $<a_{lm}a_{lm}^*>$ of the spherical-harmonic coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا