ترغب بنشر مسار تعليمي؟ اضغط هنا

Thresholds on star formation and the chemical evolution of galactic discs: cosmochronology and the age of the galaxy

55   0   0.0 ( 0 )
 نشر من قبل Martin A. Hendry
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we analyse different chronometers based on the models of chemical evolution developed in Chamcham, Pitts & Tayler (1993; hereafter CPT) and Chamcham & Tayler (1994; hereafter CT). In those papers we discussed the ability of our models to reproduce the observed G-dwarf distribution in the solar neighbourhood, age-metallicity relation and radial chemical abundance gradients. We now examine their response to the predictions of cosmochronology. We use the recent production ratios of the actinide pairs $^{235}$U/$^{238}$U and $^{232}$Th/$^{238}$U provided by Cowan, Thielemann & Truran (1991) and the observed abundance ratios from Anders & Grevesse (1989) to determine the duration of nucleosynthesis in the solar neighbourhood, and thus to determine maximum likelihood estimates and confidence intervals for the infall parameter, $beta$, which controls the growth rate of the disc in our models. We compare our predictions for the age of the disc with the age of the galaxy estimated from models of white dwarf cooling and from the age of globular clusters. From our statistical analysis we find that these three methods of age prediction appear to be consistent for a range of maximum likelihood values of $beta$ which is in good agreement with the values considered in CPT and CT, which were found to give a good fit to the observational data examined in those papers. We also briefly consider the consistency of our results with the age of the universe predicted in different cosmological models -- a topic which we will investigate more fully in future work.

قيم البحث

اقرأ أيضاً

We model the star formation history (SFH) and the chemical evolution of the Galactic disk by combining an infall model and a limit-cycle model of the interstellar medium (ISM). Recent observations have shown that the SFH of the Galactic disk violentl y variates or oscillates. We model the oscillatory SFH based on the limit-cycle behavior of the fractional masses of three components of the ISM. The observed period of the oscillation ($sim 1$ Gyr) is reproduced within the natural parameter range. This means that we can interpret the oscillatory SFH as the limit-cycle behavior of the ISM. We then test the chemical evolution of stars and gas in the framework of the limit-cycle model, since the oscillatory behavior of the SFH may cause an oscillatory evolution of the metallicity. We find however that the oscillatory behavior of metallicity is not prominent because the metallicity reflects the past integrated SFH. This indicates that the metallicity cannot be used to distinguish an oscillatory SFH from one without oscillations.
From two very simple axioms: (1) that AGN activity traces spheroid formation, and (2) that the cosmic star-formation history is dominated by spheroid formation at high redshift, we derive simple expressions for the star-formation histories of spheroi ds and discs, and their implied metal enrichment histories. Adopting a Baldry-Glazebrook initial mass function we use these relations and apply PEGASE.2 to predict the z=0 cosmic spectral energy distributions (CSEDs) of spheroids and discs. The model predictions compare favourably to the dust-corrected CSED recently reported by the Galaxy And Mass Assembly (GAMA) team from the FUV through to the K band. The model also provides a reasonable fit to the total stellar mass contained within spheroid and disc structures as recently reported by the Millennium Galaxy Catalogue team. Three interesting inferences can be made following our axioms: (1) there is a transition redshift at z ~ 1.7 at which point the Universe switches from what we refer to as hot mode evolution (i.e., spheroid formation/growth via mergers and/or collapse) to what we term cold mode evolution (i.e., disc formation/growth via gas infall and minor mergers); (2) there is little or no need for any pre-enrichment prior to the main phase of star-formation; (3) in the present Universe mass-loss is fairly evenly balanced with star-formation holding the integrated stellar mass density close to a constant value. The model provides a simple prediction of the energy output from spheroid and disc projenitors, the build-up of spheroid and disc mass, and the mean metallicity enrichment of the Universe.
We present the star formation history and chemical evolution of the Sextans dSph dwarf galaxy as a function of galactocentric distance. We derive these from the $VI$ photometry of stars in the $42 times 28$ field using the SMART model developed by Yu k & Lee (2007, ApJ, 668, 876) and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that $>$84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago ($sim$ 65% of the stars formed 13 to 15 Gyr ago while $sim$ 25% formed 11 to 13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the star formation history is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11 to 13 Gyr ago. Whether blue straggler stars are interpreted as intermediate age main sequence stars affects conclusions regarding the star formation history for times 4 to 8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H]=--1.6 in the central region and to [Fe/H]=--1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the star formation history, which self-consistently drives the chemical enrichment history.
We study the evolution of Milky Way thick and thin discs in the light of the most recent observational data. In particular, we analyze abundance gradients of O, N, Fe and Mg along the thin disc as well as the [Mg/Fe] vs. [Fe/H] relations and the meta llicity distribution functions at different Galactocentric distances. We run several models starting from the two-infall paradigm, assuming that the thick and thin discs formed by means of two different infall episodes, and we explore several physical parameters, such as radial gas flows, variable efficiency of star formation, different times for the maximum infall onto the disc, different distributions of the total surface mass density of the thick disc and enriched gas infall. Our best model suggests that radial gas flows and variable efficiency of star formation should be acting together with the inside-out mechanism for the thin disc formation. The timescale for maximum infall onto the thin disc, which determines the gap between the formation of the two discs, should be $t_{max}simeq 3.25$ Gyr. The thick disc should have an exponential, small scale length density profile and gas infall on the inner thin disc should be enriched. We compute also the evolution of Gaia-Enceladus system and study the effects of possible interactions with the thick and thin discs. We conclude that the gas lost by Enceladus or even part of it could have been responsible for the formation of the thick disc but not the thin disc.
We have obtained high-resolution spectra and carried out a detailed elemental abundance analysis for a new sample of 899 F and G dwarf stars in the Solar neighbourhood. The results allow us to, in a multi-dimensional space consisting of stellar ages, detailed elemental abundances, and full kinematic information for the stars, study and trace their respective origins. Here we briefly address selection criteria and discuss how to define a thick disc star. The results are discussed in the context of galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا