ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galactic thin and thick discs in the context of galaxy formation

131   0   0.0 ( 0 )
 نشر من قبل Thomas Bensby
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained high-resolution spectra and carried out a detailed elemental abundance analysis for a new sample of 899 F and G dwarf stars in the Solar neighbourhood. The results allow us to, in a multi-dimensional space consisting of stellar ages, detailed elemental abundances, and full kinematic information for the stars, study and trace their respective origins. Here we briefly address selection criteria and discuss how to define a thick disc star. The results are discussed in the context of galaxy formation.



قيم البحث

اقرأ أيضاً

Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Rus sian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on S0-a disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4-5 Gyr) metal rich ([Fe/H] $sim$ -0.2 - 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its disc is thick and old (10 Gyr), without evidence for a second component, and its $alpha$-element abundance suggests a 1.5-2 Gyr long formation epoch implying its formation at high redshift. Our results suggest the diversity of thick disc formation scenarios.
Recent observations suggest a double-branch behaviour of Li/H versus metallicity in the local thick and thin discs. This is reminiscent of the corresponding O/Fe versus Fe/H behaviour, which has been explained as resulting from radial migration in th e Milky Way disc. We use a semi-analytical model of disc evolution with updated chemical yields and parameterised radial migration. We explore the cases of long-lived (red giants of a few Gy lifetime) and shorter-lived (Asymptotic Giant Branch stars of several 10$^8$ yr) stellar sources of Li, as well as those of low and high primordial Li. We show that both factors play a key role in the overall Li evolution. We find that the observed two-branch Li behaviour is only directly obtained in the case of long-lived stellar Li sources and low primordial Li. In all other cases, the data imply systematic Li depletion in stellar envelopes, thus no simple picture of the Li evolution can be obtained. This concerns also the reported Li/H decrease at supersolar metallicities.
We study the evolution of Milky Way thick and thin discs in the light of the most recent observational data. In particular, we analyze abundance gradients of O, N, Fe and Mg along the thin disc as well as the [Mg/Fe] vs. [Fe/H] relations and the meta llicity distribution functions at different Galactocentric distances. We run several models starting from the two-infall paradigm, assuming that the thick and thin discs formed by means of two different infall episodes, and we explore several physical parameters, such as radial gas flows, variable efficiency of star formation, different times for the maximum infall onto the disc, different distributions of the total surface mass density of the thick disc and enriched gas infall. Our best model suggests that radial gas flows and variable efficiency of star formation should be acting together with the inside-out mechanism for the thin disc formation. The timescale for maximum infall onto the thin disc, which determines the gap between the formation of the two discs, should be $t_{max}simeq 3.25$ Gyr. The thick disc should have an exponential, small scale length density profile and gas infall on the inner thin disc should be enriched. We compute also the evolution of Gaia-Enceladus system and study the effects of possible interactions with the thick and thin discs. We conclude that the gas lost by Enceladus or even part of it could have been responsible for the formation of the thick disc but not the thin disc.
Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Usin g 6-D coordinates from Gaia-DR2 and age estimates from Sanders & Das (2018), we select $sim 24000$ old stars (${tau > 10}$ Gyr, with uncertainties $lesssim 15%$) within 2 kpc from the Sun (full sample). A cross-match with APOGEE-DR16 ($sim 1000$ stars) reveals comparable fractions of old chemically defined thin/thick disc stars. We show that the full sample pericenter radius ($r_mathrm{per}$) distribution has three peaks, one associated with the stellar halo and the other two having contributions from the thin/thick discs. Using a high-resolution $N$-body+Smooth Particle Hydrodynamics simulation, we demonstrate that one peak, at $r_mathrm{per}approx 7.1$ kpc, is produced by stars from both discs which were born in the inner Galaxy and migrated to the Solar Neighbourhood. In the Solar Neighbourhood, $sim 1/2$ ($sim 1/3$) of the old thin (thick) disc stars are classified as migrators. Our results suggest that thin/thick discs are affected differently by radial migration inasmuch as they have different eccentricity distributions, regardless of vertical scale heights. We interpret the existence of a significant old thin disc population as evidence for an early co-formation of thin/thick discs, arguing that clump instabilities in the early disc offer a compelling explanation for the observed trends.
The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. Using high-resolution FEROS, HARPS, and UVES spectra from the ESO archive, we perform a homogeneous analysis on 6500 FGK Milky Way stars, thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). We chemically characterize the thin and the thick discs, and a metal-rich alpha-rich population. We find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. In thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd-Dy. We also find that the alpha-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/alpha] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and alpha-elements. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. Including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا