ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Big Bang Deuterium

87   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1994
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new upper and lower bounds to the primordial abundances of deuterium and helium-3 based on observational data from the solar system and the interstellar medium. Independent of any model for the primordial production of the elements we find (at the 95% C.L.): $1.5 times 10^{-5} le (D/H)_P le 10.0 times 10^{-5}$ and $(^3He/H)_P le 2.6times 10^{-5}$. When combined with the predictions of standard big bang nucleosynthesis, these constraints lead to a 95% C.L. bound on the primordial abundance of deuterium: $(D/H)_{best} = (3.5^{+2.7}_{-1.8})times 10^{-5}$. Measurements of deuterium absorption in the spectra of high redshift QSOs will directly test this prediction. The implications of this prediction for the primordial abundances of helium-4 and lithium-7 are discussed, as well as those for the universal density of baryons.

قيم البحث

اقرأ أيضاً

Standard big bang nucleosynthesis (SBBN) has been remarkably successful, and it may well be the correct and sufficient account of what happened. However, interest in variations from the standard picture come from two sources: First, big bang nucleosy nthesis can be used to constrain physics of the early universe. Second, there may be some discrepancy between predictions of SBBN and observations of abundances. Various alternatives to SBBN include inhomogeneous nucleosynthesis, nucleosynthesis with antimatter, and nonstandard neutrino physics.
I give an epistemological analysis of the developments of relativistic cosmology from 1917 to 1966, based on the seminal articles by Einstein, de Sitter, Friedmann, Lemaitre, Hubble, Gamow and other historical figures of the field. It appears that mo st of the ingredients of the present-day standard cosmological model, including the acceleration of the expansion due to a repulsive dark energy, the interpretation of the cosmological constant as vacuum energy or the possible non-trivial topology of space, had been anticipated by Georges Lemaitre, although his articles remain mostly unquoted.
In the primordial Universe, neutrino decoupling occurs only slightly before electron-positron annihilations, leading to an increased neutrino energy density with order $10^{-2}$ spectral distortions compared to the standard instantaneous decoupling a pproximation. However, there are discrepancies in the literature on the impact it has on the subsequent primordial nucleosynthesis, in terms of both the magnitude of the abundance modifications and their sign. We review how neutrino decoupling indirectly affects the various stages of nucleosynthesis, namely, the freezing out of neutron abundance, the duration of neutron beta decay, and nucleosynthesis itself. This allows to predict the sign of the abundance variations that are expected when the physics of neutrino decoupling is taken into account. For simplicity, we ignore neutrino oscillations, but we conjecture from the detailed interplay of neutrino temperature shifts and distortions that their effect on final light element abundances should be subdominant.
68 - Hideki Ishihara 2001
Big bang of the Friedmann-Robertson-Walker (FRW)-brane universe is studied. In contrast to the spacelike initial singularity of the usual FRW universe, the initial singularity of the FRW-brane universe is point-like from the viewpoint of causality in cluding gravitational waves propagating in the bulk. Existence of null singularities (seam singuralities) is also shown in the flat and open FRW-brane universe models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا