ترغب بنشر مسار تعليمي؟ اضغط هنا

The Magellanic zoo: Mid-infrared Spitzer spectroscopy of evolved stars and circumstellar dust in the Magellanic Clouds

259   0   0.0 ( 0 )
 نشر من قبل G. C. Sloan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed a sample of evolved stars in the Large and Small Magellanic Clouds (LMC and SMC) with the Infrared Spectrograph on the Spitzer Space Telescope. Comparing samples from the SMC, LMC, and the Galaxy reveals that the dust-production rate depends on metallicity for oxygen-rich stars, but carbon stars with similar pulsation properties produce similar quantities of dust, regardless of their initial metallicity. Other properties of the oxygen-rich stars also depend on metallicity. As the metallicity decreases, the fraction of naked (i.e. dust-free) stars increases, and among the naked stars, the strength of the 8 um absorption band from SiO decreases. Our sample includes several massive stars in the LMC with long pulsation periods which produce significant amounts of dust, probably because they are young and relatively metal rich. Little alumina dust is seen in circumstellar shells in the SMC and LMC, unlike in Galactic samples. Three oxygen-rich sources also show emission from magnesium-rich crystalline silicates. Many also show an emission feature at 14 um. The one S star in our sample shows a newly detected emission feature centered at 13.5 um. At lower metallicity, carbon stars with similar amounts of amorphous carbon in their shells have stronger absorption from molecular acetylene (C_2H_2) and weaker emission from SiC and MgS dust, as discovered in previous studies.



قيم البحث

اقرأ أيضاً

279 - V. Charmandaris 2008
We present a study of the mid-infrared properties and dust content of a sample of 27 HII ``blobs, a rare class of compact HII regions in the Magellanic Clouds. A unique feature of this sample is that even though these HII regions are of high and low excitation they have nearly the same physical sizes ~1.5-3 pc. We base our analysis on archival 3-8 microns infrared imagery obtained with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope. We find that despite their youth, sub-solar metallicity and varied degrees of excitation, the mid-infrared colors of these regions are similar to those of typical HII regions. Higher excitation ``blobs (HEBs) display stronger 8 micron emission and redder colors than their low-excitation counterparts (LEBs).
We have observed a sample of 36 objects in the Small Magellanic Cloud (SMC) with the Infrared Spectrometer on the Spitzer Space Telescope. Nineteen of these sources are carbon stars. An examination of the near- and mid-infrared photometry shows that the carbon-rich and oxygen-rich dust sources follow two easily separated sequences. A comparison of the spectra of the 19 carbon stars in the SMC to spectra from the Infrared Space Observatory (ISO) of carbon stars in the Galaxy reveals significant differences. The absorption bands at 7.5 um and 13.7 um due to C2H2 are stronger in the SMC sample, and the SiC dust emission feature at 11.3 um is weaker. Our measurements of the MgS dust emission feature at 26-30 um are less conclusive, but this feature appears to be weaker in the SMC sample as well. All of these results are consistent with the lower metallicity in the SMC. The lower abundance of SiC grains in the SMC may result in less efficient carbon-rich dust production, which could explain the excess C2H2 gas seen in the spectra. The sources in the SMC with the strongest SiC dust emission tend to have redder infrared colors than the other sources in the sample, which implies more amorphous carbon, and they also tend to show stronger MgS dust emission. The weakest SiC emission features tend to be shifted to the blue; these spectra may arise from low-density shells with large SiC grains.
We have carried out an infrared search for obscured AGB stars in the Magellanic Clouds. The survey uncovered a number of obscured AGB stars as well as some supergiants with infrared excess. We present photometry of the sources and discuss the colour diagrams and bolometric luminosities. Most of the AGB stars are luminous, often close to the classical limit of $M_{rm bol}=-7.1$. To determine whether the stars are oxygen-rich or carbon-rich, we have acquired narrow-band mid-infrared photometry with the ESO TIMMI camera for several sources. All but one are found to show the silicate feature and therefore to have oxygen-rich dust: the colours of the remaining source are consistent with either an oxygen-rich or a carbon-rich nature. A method to distinguish carbon and oxygen stars based on H$-$K versus K$-$[12] colours is presented. We discuss several methods of calculating the mass-loss rate: for the AGB stars the mass-loss rates vary between approximately 5 times 10**-4 and 5 times 10**-6 solar masses per year, depending on assumed dust-to-gas mass ratio. We present a new way to calculate mass-loss rates from the OH-maser emission. We find no evidence for a correlation of the mass-loss rates with luminosity in these obscured stars. Neither do the mass-loss rates for the LMC and SMC stars differ in any clear systematic way from each other. Expansion velocities appear to be slightly lower in the LMC than in the Galaxy. Period determinations are discussed for two sources: the periods are comparable to those of the longer-period galactic OH/IR stars. All of the luminous stars for which periods are available, have significantly higher luminosities than predicted from the period--luminosity relations.
A recent data analysis of the far-infrared (FIR) map of the Galaxy and the Magellanic Clouds has shown that there is a tight correlation between two FIR colours: the 60 um-100 um and 100 um-140 um colours. This FIR colour relation called ``main corre lation can be interpreted as indicative of a sequence of various interstellar radiation fields with a common FIR optical property of grains. In this paper, we constrain the FIR optical properties of grains by comparing the calculated FIR colours with the observational main correlation. We show that neither of the ``standard grain species (i.e. astronomical silicate and graphite grains) reproduces the main correlation. However, if the emissivity index at ~ 100--200 um is changed to ~ 1--1.5 (not ~ 2 as the above two species), the main correlation can be successfully explained. Thus, we propose that the FIR emissivity index is ~ 1--1.5 for the dust in the Galaxy and the Magellanic Clouds at ~ 100--200 um. We also consider the origin of the minor correlation called ``sub-correlation, which can be used to estimate the Galactic star formation rate.
We present a study of the infrared properties of 4922 spectroscopically confirmed massive stars in the Large and Small Magellanic Clouds, focusing on the active OB star population. Besides OB stars, our sample includes yellow and red supergiants, Wol f-Rayet stars, Luminous Blue Variables (LBVs) and supergiant B[e] stars. We detect a distinct Be star sequence, displaced to the red, and find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We also find photometric variability among the active OB population and evidence for transitions of Be stars to B stars and vice versa. We furthermore confirm the presence of dust around all the supergiant B[e] stars in our sample, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا