ترغب بنشر مسار تعليمي؟ اضغط هنا

EROs found behind lensing clusters. II. Stellar populations and dust properties of optical dropout EROs and comparison with related objects

48   0   0.0 ( 0 )
 نشر من قبل Daniel Schaerer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Schaerer




اسأل ChatGPT حول البحث

We determine the nature, redshift, stellar populations and dust properties of optically faint or non-detected extremely red objects (ERO) found from our survey of the lensing clusters A1835 and AC114. We perform SED fitting and use deep optical, HST, VLT, Spitzer data, and for some objects and sub-mm data. For most of the lensed EROs we find photometric redshifts showing a strong degeneracy between low-z (z~1-3) and high-z (z~6-7). Although formally best fits are often found at high-z, their resulting bright absolute magnitudes, the number density of these objects, and in some cases Spitzer photometry or longer wavelength observations, suggest strongly that all of these objects are at low-z. The majority of these objects are best fitted with young (<~ 0.5-0.7 Gyr) and dusty starbursts. Indications for strong extinction, with A_V~2.4-4, are found in some objects. For dusty objects star formation rates (SFR) have been estimated from the bolometric luminosity determined after fitting of semi-empirical starburst, ERO, and ULIRG templates. Typically we find SFR~(1-18) Msun/yr. Again, SMMJ14009+0252 stands out as a LIRG with SFR 1000 Msun/yr. Concerning the comparison objects, we argue that the massive post-starburst z~6.5 galaxy candidate HUDF-J2 showing observed properties very similar to our EROs, is more likely a dusty starburst at z~2.3-2.6. This interpretation also naturally explains the observed 24 micron emission. Both empirically and from our SED fits we find that the IRAC selectec EROs from Yan et al (2004) show very similar properties to our lensed EROs. Reasonable fits are found for most of them with relatively young and dusty stellar populations.

قيم البحث

اقرأ أيضاً

392 - A. Hempel 2007
We study the properties and nature of extremely red galaxies (ERO, R-K>5.6) found behind two lensing clusters and compare them with other known galaxy populations. New HST/ACS observations, Spitzer IRAC and MIPS, and Chandra/ACIS observations of the two lensing clusters Abell 1835 and AC114 contemplate our earlier optical and near-IR observations and have been used to study extremely red objects (EROs) in these deep fields. We have found 6 and 9 EROs in Abell 1835 and AC114. Several (7) of these objects are undetected up to the I and/or z band, and are hence ``optical drop-out sources. The photometric redshifts of most of our sources (80%) are z~0.7-1.5. According to simple colour-colour diagrams the majority of our objects would be classified as hosting old stellar populations. However, there are clear signs of dusty starbursts for several among them. These objects correspond to the most extreme ones in R-K colour. We estimate a surface density of (0.97+-0.31) arcmin-2 for EROs with (R-K>5.6) at K<20.5. Among our 15 EROs 6 (40 %) also classify as distant red galaxies (DRGs). 11 of 13 EROs with available IRAC photometry also fulfil the selection criteria for IRAC selected EROs (IEROs) of Yan et al. (2004). SED modelling shows that ~ 36 % of the IEROs in our sample are luminous or ultra-luminous infrared galaxies ((U)LIRG). Some very red DRGs are found to be very dusty starbursts, even (U)LIRGs, as also supported by their mid-IR photometry. No indication for AGNs is found, although faint activity cannot be excluded for all objects. From mid-IR and X-ray data 5 objects are clearly classified as starbursts. The derived properties are quite similar to those of DRGs and IEROs, except for 5 extreme objects in terms of colours, for which a very high extinction (Av>3) is found.
We present a new EROS-2 measurement of the microlensing optical depth toward the Galactic Bulge. Light curves of $5.6times 10^{6}$ clump-giant stars distributed over $66 deg^2$ of the Bulge were monitored during seven Bulge seasons. 120 events were f ound with apparent amplifications greater than 1.6 and Einstein radius crossing times in the range $5 {rm d}<t_e <400 {rm d}$. This is the largest existing sample of clump-giant events and the first to include northern Galactic fields. In the Galactic latitude range $1.4degr<|b|<7.0degr$, we find $tau/10^{-6}=(1.62 pm 0.23)exp[-a(|b|-3 {rm deg})]$ with $a=(0.43 pm0.16)deg^{-1}$. These results are in good agreement with our previous measurement, with recent measurements of the MACHO and OGLE-II groups, and with predictions of Bulge models.
380 - J. Afonso 2003
Insensitive to dust obscuration, radio wavelengths are ideal to study star-forming galaxies free of dust induced biases. Using data from the Phoenix Deep Survey, we have identified a sample of star-forming extremely red objects (EROs). Stacking of th e radio images of the radio-undetected star-forming EROs revealed a significant radio detection. Using the expected median redshift, we estimate an average star-formation rate of 61 M_sun/yr for these galaxies.
We present a Spitzer/IRAC survey of H-faint ($H_{160} gtrsim 26.4$, $<5sigma$) sources in 101 lensing cluster fields. Across a CANDELS/Wide-like survey area of $sim$648 arcmin$^2$ (effectively $sim$221 arcmin$^2$ in the source plane), we have securel y discovered 53 sources in the IRAC Channel-2 band (CH2, 4.5 $mathrm{mu m}$; median CH2$=22.46pm0.11$ AB mag) that lack robust HST/WFC3-IR F160W counterparts. The most remarkable source in our sample, namely ES-009 in the field of Abell 2813, is the brightest H-faint galaxy at 4.5 $mathrm{mu m}$ known so far ($mathrm{CH2}=20.48pm0.03$ AB mag). We show that the H-faint sources in our sample are massive (median $M_mathrm{star} = 10^{10.3pm 0.3}$ $M_odot$), star-forming (median star formation rate $=100_{-40}^{+60}$ $M_odot$yr$^{-1}$) and dust-obscured ($A_V=2.6pm0.3$) galaxies around a median photometric redshift of $z=3.9pm0.4$. The stellar continua of 14 H-faint galaxies can be resolved in the CH2 band, suggesting a median circularized effective radius ($R_mathrm{e,circ}$; lensing corrected) of $1.9pm0.2$ kpc and $<1.5$ kpc for the resolved and whole samples, respectively. This is consistent with the sizes of massive unobscured galaxies at $zsim4$, indicating that H-faint galaxies represent the dusty tail of the distribution of a wider galaxy population. Comparing with the ALMA dust continuum sizes of similar galaxies reported previously, we conclude that the heavy dust obscuration in H-faint galaxies is related to the compactness of both stellar and dust continua ($R_mathrm{e,circ}sim 1$ kpc). These H-faint galaxies make up $16_{-7}^{+13}$% of the galaxies in the stellar mass range of $10^{10}-10^{11.2}$ $M_odot$ at $z=3sim5$, contributing to $8_{-4}^{+8}$% of the cosmic star formation rate density in this epoch and likely tracing the early phase of massive galaxy formation.
97 - A. Georgakakis 2005
We estimate the star-formation rates and the stellar masses of the Extremely Red objects (EROs) detected in a 180arcmin2 Ks-band survey (Ks~20mag). This sample is complemented by sensitive 1.4GHz radio observations (12micro-Jy; 1sigma rms) and multiw aveband photometric data (UBVRIJ) as part of the Phoenix Deep Survey. For bright K<19.5mag EROs in this sample (I-K>4mag; total of 177) we use photometric methods to discriminate dust-enshrouded active systems from early-type galaxies and to constrain their redshifts. Radio stacking is then employed to estimate mean radio flux densities of 8.6 (3sigma) and 6.4micro-Jy (2.4sigma) for the dusty and early-type subsamples respectively. Assuming that dust enshrouded active EROs are powered by star-formation the above radio flux density at the median redshift of z=1 translates to a radio luminosity of 4.5e22W/Hz and a star-formation rate of SFR=25Mo/yr. Combining this result with photometric redshift estimates we find a lower limit to the star-formation rate density of ~0.02Mo/yr/Mpc^3 for the K<19.5mag dusty EROs in the range z=0.85-1.35. Comparison with the SFR density estimated from previous ERO samples (with similar selection criteria) using optical emission lines, suffering dust attenuation, suggests a mean dust reddening of at least E(B-V)~0.5 for this population. We further use the Ks-band luminosity as proxy to stellar mass and argue that the dust enshrouded EROs in our sample are massive systems, M>5e10Mo. We also find that EROs represent a sizable fraction (~50%) of the number density of galaxies more massive than M=5e10Mo at z~1, with almost equal contributions from dusty and early types. Similarly, we find that EROs contribute about half of the mass density of the Universe at z~1 after taking into account incompleteness because of the limit K=19.5mag.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا