ﻻ يوجد ملخص باللغة العربية
In terms of the quark-gluon string model the analysis of the classic procedure to estimate the energy of giant air showers with help of the parameter s(600) (a density of energy deposition in the scintillator at a distance of 600 m from the shower core) have been carried out. Simulations of the signal s(600) with help of the CORSIKA code in terms of the hybrid scheme show energy estimates which are approximately a factor of 1.6 times lower than adopted at the Yakutsk array. The energy estimates calculated with the help of the Cherenkov radiation coincide with the experimental data. Simulations of deposited energy distributions in the atmosphere with help of the GEANT4 code and the CORSIKA code show that more than 20% of this energy may be deposited at distances above 100 m from the shower axis.
The determination of the shower development in air using fluorescence yield is subject to corrections due to the angular spread of the particles in the shower. This could introduce systematic errors in the energy determination of an extensive air shower through the fluorescence technique.
We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray as
We present a new method for the reconstruction of the longitudinal profile of extensive air showers induced by ultra-high energy cosmic rays. In contrast to the typically considered shower size profile, this method employs directly the ionization ene
Evidence of azimuthal asymmetries in the time structure and signal size has been found in non-vertical showers as a function of zenith angle. These asymmetries arise because of the different paths traveled by particles in the upper and lower sides of
In this article we discuss the possibility of using the observations by GLAST of standard gamma sources, as the Crab Nebula, to calibrate Imaging Air Cherenkov detectors, MAGIC in particular, and optimise their energy resolution. We show that at arou