ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Cherenkov light from air showers with Geiger-APDs

122   0   0.0 ( 0 )
 نشر من قبل Adam Nepomuk Otte
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. N. Otte




اسأل ChatGPT حول البحث

We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov light from air showers. We estimate a detection efficiency, which is 60% higher than the efficiency of a MAGIC camera pixel. Ambient temperature dark count rates of the tested G-APDs are below the rates of the night sky light background. According to these recent tests G-APDs promise a major progress in ground-based gamma-ray astronomy.



قيم البحث

اقرأ أيضاً

We perform a new, detailed calculation of the flux and energy spectrum of Earth-emerging $tau$-leptons generated from the interactions of tau neutrinos and antineutrinos in the Earth. A layered model of the Earth is used to describe the variable dens ity profile of the Earth. Different assumptions regarding the neutrino charged- and neutral-current cross sections as well as the $tau$-lepton energy loss models are used to quantify the systematic uncertainty from these on the results. A baseline simulation is then used to generate the optical Cherenkov signal from upward-moving extensive air showers generated by the $tau$-lepton decay in the atmosphere, applicable to a range of space-based instruments. We use this simulation to determine the neutrino sensitivity for $E_ u>$ 10 PeV for a space-based experiment with performance similar to that for the Probe of Extreme MultiMessenger Astrophysics (POEMMA) mission currently under study.
103 - Enrique Zas 2005
The possibilities of detecting high energy neutrinos through inclined showers produced in the atmosphere are addressed with an emphasis on the detection of air showers by arrays of particle detectors. Rates of inclined showers produced by both down-g oing neutrino interactions and by up-coming $tau$ decays from earth-skimming neutrinos as a function of shower energy are calculated with analytical methods using two sample neutrino fluxes with different spectral indices. The relative contributions from different flavors and charged, neutral current and resonant interactions are compared for down-going neutrinos interacting in the atmosphere. No detailed description of detectors is attempted but rough energy thresholds are implemented to establish the ranges of energies which are more suitable for neutrino detection through inclined showers. Down-going and up-coming rates are compared.
The principle and performances of the CODALEMA experimental device, set up to study the possibility of high energy cosmic rays radio detection, are presented. Radio transient signals associated to cosmic rays have been identified, for which arrival d irections and showers electric field topologies have been extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.10^16 eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of UHECR at a larger scale.
88 - Tim Huege 2017
Radio detection of extensive air showers initiated in the Earths atmosphere has made tremendous progress in the last decade. Today, radio detection is routinely used in several cosmic-ray observatories. The physics of the radio emission in air shower s is well-understood, and analysis techniques have been developed to determine the arrival direction, the energy and an estimate for the mass of the primary particle from the radio measurements. The achieved resolutions are competitive with those of more traditional techniques. In this article, I shortly review the most important achievements and discuss the potential for future applications.
Studies of the radio detection of Extensive Air Showers is the goal of the demonstrative experiment CODALEMA. Previous analysis have demonstrated that detection around $5.10^{16}$ eV was achieved with this set-up. New results allow for the first time to study the topology of the electric field associated to EAS events on a event by event basis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا