ﻻ يوجد ملخص باللغة العربية
We present optical and infrared observations of the unusual Type Ia supernova (SN) 2004eo. The light curves and spectra closely resemble those of the prototypical SN 1992A, and the luminosity at maximum (M_B = -19.08) is close to the average for a SN Ia. However, the ejected 56Ni mass derived by modelling the bolometric light curve (about 0.45 solar masses) lies near the lower limit of the 56Ni mass distribution observed in normal SNe Ia. Accordingly, SN 2004eo shows a relatively rapid post-maximum decline in the light curve (Delta m_(B) = 1.46), small expansion velocities in the ejecta, and a depth ratio Si II 5972 / Si II 6355 similar to that of SN 1992A. The physical properties of SN 2004eo cause it to fall very close to the boundary between the faint, low velocity gradient, and high velocity gradient subgroups proposed by Benetti et al. (2005). Similar behaviour is seen in a few other SNe Ia. Thus, there may in fact exist a few SNe Ia with intermediate physical properties.
We present early-time optical and near-infrared photometry of supernova (SN) 2005cf. The observations, spanning a period from about 12 days before to 3 months after maximum, have been obtained through the coordination of observational efforts of vari
Unburned carbon is potentially a powerful probe of Type Ia supernova (SN) explosion mechanisms. We present comprehensive optical and near-infrared (NIR) data on the transitional Type Ia SN 2015bp. An early NIR spectrum ($t = -$9.9 days with respect t
We present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. Prior to B-band maximum, the spectra resemble th
We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are charact
We present photometry and time-series spectroscopy of the nearby type Ia supernova (SN Ia) SN 2015F over $-16$ days to $+80$ days relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 201