ترغب بنشر مسار تعليمي؟ اضغط هنا

Early observations of the nearby type Ia supernova SN 2015F

115   0   0.0 ( 0 )
 نشر من قبل Regis Cartier
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometry and time-series spectroscopy of the nearby type Ia supernova (SN Ia) SN 2015F over $-16$ days to $+80$ days relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 2015F is a slightly sub-luminous SN Ia with a decline rate of $Delta m15(B)=1.35 pm 0.03$ mag, placing it in the region between normal and SN 1991bg-like events. Our densely-sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II $lambda 6580$ absorption until $-4$ days, and high-velocity Ca II is particularly strong at $<-10$ days at expansion velocities of $simeq$23000kms. At early times, our spectral modelling with syn++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities $>14000$ km s$^{-1}$, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at $sim$6800 AA that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 AA feature is weakly present in other normal SN Ia events, and common in the SN 1991bg-like sub-class.



قيم البحث

اقرأ أيضاً

On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starti ng about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of dM/dt<10^-8 (w/100 km/s) [M_solar/yr] from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.
Supernova (SN) 2009ig was discovered 17 hours after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost supernovae for inten sive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of a SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta - the ejecta velocity measured in our earliest spectra (v ~ -23,000 km/s for Si II 6355) is the highest yet measured in a SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13 +/- 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all Type Ia supernovae at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe.
194 - T. Zhang , X. Wang , W. Li 2009
We present optical photometry and spectra for the Type Ia supernova (SN Ia) 2007gi in the nearby galaxy NGC 4036. SN 2007gi is characterized by extremely high-velocity (HV) features of the intermediate-mass elements (Si, Ca, and S), with expansion ve locities ($v_{rm exp}$) approaching $sim$15,500 km s$^{-1}$ near maximum brightness (compared to $sim$10,600 km s$^{-1}$ for SNe Ia with normal $v_{rm exp}$). SN 2007gi reached a $B$-band peak magnitude of 13.25$pm$0.04 mag with a decline rate of $Delta m_{15}(B)$(true) = 1.33$pm$0.09 mag. The $B$-band light curve of SN 2007gi demonstrated an interesting two-stage evolution during the nebular phase, with a decay rate of 1.16$pm$0.05 mag (100 days)$^{-1}$ during $t = 60$--90 days and 1.61$pm0.04$ mag (100 days)$^{-1}$ thereafter. Such a behavior was also observed in the HV SN Ia 2006X, and might be caused by the interaction between supernova ejecta and circumstellar material (CSM) around HV SNe Ia. Based on a sample of a dozen well-observed $R$-band (or unfiltered) light curves of SNe Ia, we confirm that the HV events may have a faster rise time to maximum than the ones with normal $v_{rm exp}$.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the ma ximum light in $B$-band. The photometric analysis indicates that SN 2017hpa is a normal type Ia with $Delta m_{B}(15) = 0.98pm0.16$ mag and $M_{B}=-19.45pm0.15$ mag at a distance modulus of $mu = 34.08pm0.09$ mag. The $(uvw1-uvv)$ colour evolution shows that SN 2017hpa falls in the NUV-blue group. The $(B-V)$ colour at maximum is bluer in comparison to normal type Ia supernovae. Spectroscopic analysis shows that the Si II 6355 absorption feature evolves rapidly with a velocity gradient, $dot{v}=128pm 7$ km s$^{-1}$ d$^{-1}$. The pre-maximum phase spectra show prominent C II 6580 {AA} absorption feature. The C II 6580 {AA} line velocity measured from the observed spectra is lower than the velocity of Si II 6355 {AA}, which could be due to a line of sight effect. The synthetic spectral fits to the pre-maximum spectra using syn++ indicate the presence of a high velocity component in the Si II absorption, in addition to a photospheric component. Fitting the observed spectrum with the spectral synthesis code TARDIS, the mass of unburned C in the ejecta is estimated to be $sim 0.019$~$M_{odot}$. The peak bolometric luminosity is $L^{bol}_{peak} = 1.43times10^{43}$ erg s$^{-1}$. The radiation diffusion model fit to the bolometric light curve indicates $0.61pm0.02$ $M_odot$ of $^{56}$Ni is synthesized in the explosion.
74 - X. Huang , Z. Raha , G. Aldering 2017
Correction of Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is bas ed on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 {AA}, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 {AA} band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al. (1989), ODonnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6$pm$1.1 Mpc. We compare this result with distance measurements in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا