ترغب بنشر مسار تعليمي؟ اضغط هنا

Planets in binary systems: is the present configuration indicative of the formation process?

38   0   0.0 ( 0 )
 نشر من قبل Mauro Barbieri
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present dynamical configuration of planets in binary star systems may not reflect their formation process since the binary orbit may have changed in the past after the planet formation process was completed. An observed binary system may have been part of a former hierarchical triple that became unstable after the planets completed their growth around the primary star. Alternatively, in a dense stellar environment even a single stellar encounter between the star pair and a singleton may singificantly alter the binary orbit. In both cases the planets we observe at present would have formed when the dynamical environment was different from the presently observed one. We have numerically integrated the trajectories of the stars (binary plus singleton) and of test planets to investigate the abovementioned mechanisms. Our simulations show that the circumstellar environment during planetary formation around the primary was gravitationally less perturbed when the binary was part of a hierarchical triple because the binary was necessarely wider and, possibly, less eccentric. This circumstance has consequences for the planetary system in terms of orbital spacing, eccentricity, and mass of the individual planets. Even in the case of a single stellar encounter the present appearance of a planetary system in a binary may significantly differ from what it had while planet formation was ongoing. However, while in the case of instability of a triple the trend is always towards a tighter and more eccentric binary system, when a single stellar encounter affects the system the orbit of the binary can become wider and be circularized.

قيم البحث

اقرأ أيضاً

At present the possible existence of planets around the stars of a close binary system is still matter of debate. Can planetary bodies form in spite of the strong gravitational perturbations of the companion star? We study in this paper via numerical simulation the last stage of planetary formation, from embryos to terrestrial planets in the Alpha Cen system, the prototype of close binary systems. We find that Earth class planets can grow around Alpha Cen A on a time-scale of 50 Myr. In some of our numerical models the planets form directly in the habitable zone of the star in low eccentric orbits. In one simulation two of the final planets are in a 2:1 mean motion resonance that, however, becomes unstable after 200 Myr. During the formation process some planetary embryos fall into the stars possibly altering their metallicity.
The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data rev eal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as Kozai cycles and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (e>0.6) and very low (e<0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e=0.1-0.6).
As part of a national scientific network Pathways to Habitability the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize t he state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in the order of a few percent) with the terrestrial planets. We thus are able to give an estimate of the respective contribution to the actual water content (of some Earth-oceans) in the mantle, in the crust and on the surface of Earth. In the second part we discuss in more detail how the formation of larger bodies after a collision may happen as the outcome depends on parameters like collision velocity, impact angle, and the materials involved. We present results obtained by SPH (Smooth Particle Hydrodynamics) simulations. We briefly describe this method and show different scenarios with respect to the formed bodies, possible fragmentation and the water content before and after the collision. In an appendix we discuss detection methods for extrasolar planets (close to 2000 such objects have been discovered so far).
Searches for planets in close binary systems explore the degree to which stellar multiplicity inhibits or promotes planet formation. There is a degeneracy between planet formation models when only systems with single stars are studied--several mechan isms appear to be able to produce such a final result. This degeneracy is lifted by searching for planets in binary systems; the resulting detections (or evidence of non-existence) of planets in binaries isolates which models may contribute to how planets form in nature. In this chapter, we consider observational efforts to detect planetary companions to binary stars in two types of hierarchical planet-binary configurations: first ``S-type planets which orbit just one of the stars, with the binary period being much longer than the planets; second, ``P-type or circumbinary planets, where the planet simultaneously orbits both stars, and the planetary orbital period is much longer than that of the binary. The S-type planet finding techniques are different for binaries that can or cannot be spatially resolved. For wider systems, techniques reviewed include dualstar interferometric differential astrometry and precision radial velocities. Alternatively, unresolved binaries can be studied using modified dualstar PHASES-style differential astrometry or a modification of the radial velocity technique for composite spectra. Should a fortunately aligned--but still long period--binary be found, eclipse timing can also reveal the presence of S-type planets. Methods for detecting P-type planets include the composite-spectra variant of the radial velocity technique and eclipse timing.
We investigate the stability of prograde versus retrograde planets in circular binary systems using numerical simulations. We show that retrograde planets are stable up to distances closer to the perturber than prograde planets. We develop an analyti cal model to compute the prograde and retrograde mean motion resonances locations and separatrices. We show that instability is due to single resonance forcing, or caused by nearby resonances overlap. We validate our results regarding the role of single resonances and resonances overlap on orbit stability, by computing surfaces of section of the CR3BP. We conclude that the observed enhanced stability of retrograde planets with respect to prograde planets is due to essential differences between the phase-space topology of retrograde versus prograde resonances (at p/q mean motion ratio, prograde resonance is of order p - q while retrograde resonance is of order p + q).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا