ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Lyman continuum emission from young galaxies

149   0   0.0 ( 0 )
 نشر من قبل Alexei Razoumov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on cosmological simulations, we model Lyman continuum emission from a sample of 11 high-redshift star forming galaxies spanning a mass range of a factor 20. Each of the 11 galaxies has been simulated both with a Salpeter and a Kroupa initial mass function (IMF). We find that the Lyman continuum (LyC) luminosity of an average star forming galaxy in our sample declines from z=3.6 to 2.4 due to the steady gas infall and higher gas clumping at lower redshifts, increasingly hampering the escape of ionizing radiation. The galaxy-to-galaxy variation of apparent LyC emission at a fixed redshift is caused in approximately equal parts by the intrinsic variations in the LyC emission and by orientation effects. The combined scatter of an order of magnitude can explain the variance in the far-UV spectra of high-redshift galaxies detected by Shapley et al. (2006). Our results imply that the cosmic galactic ionizing UV luminosity would be monotonically decreasing from z=3.6 to 2.4, curiously anti-correlated with the star formation rate in the smaller galaxies, which on average rises during this redshift interval.



قيم البحث

اقرأ أيضاً

Compact starburst galaxies are thought to include many or most of the galaxies from which substantial Lyman continuum emission can escape into the intergalactic medium. Li and Malkan (2018) used SDSS photometry to find a population of such starburst galaxies at z~0.5. They were discovered by their extremely strong [OIII]4959+5007 emission lines, which produce a clearly detectable excess brightness in the i bandpass, compared with surrounding filters. We therefore used the HST/COS spectrograph to observe two of the newly discovered i-band excess galaxies around their Lyman limits. One has strongly detected continuum below its Lyman limit, corresponding to a relative escape fraction of ionizing photons of 20+/-2%. The other, which is less compact in UV imaging, has a 2-sigma upper limit to its Lyman escape fraction of <5%. Before the UV spectroscopy, the existing data could not distinguish these two galaxies. Although a sample of two is hardly sufficient for statistical analysis, it shows the possibility that some fraction of these strong [OIII] emitters as a class have ionizing photons escaping. The differences might be determined by the luck of our particular viewing geometry. Obtaining the HST spectroscopy, revealed that the Lyman-continuum emitting galaxy differs in having no central absorption in its prominent Ly{alpha} emission line profile. The other target, with no escaping Lyman continuum, shows the more common double-peaked Ly{alpha} emission.
If enough of their Lyman limit continuum escapes, star-forming galaxies could be significant contributors to the cosmic background of ionizing photons. To investigate this possibility, we obtained the first deep imaging in the far ultraviolet of elev en bright blue galaxies at intermediate redshift (z=1.1--1.4). NO Lyman continuum emission was detected. Sensitive, model-independent, upper limits of typically 2 x 10**-19 erg/sec/cm2/Ang were obtained for the ionizing flux escaping from these normal galaxies. This corresponds to lower limits on the observed ratio of 1500 to 700Ang flux of 150 up to 1000. Based on a wide range of stellar synthesis models, this suggests that less than 6%, down to less than 1%, of the available ionizing flux emitted by hot stars is escaping these galaxies. The magnitude of this spectral break at the Lyman l imit confirms that the basic premise of `Lyman break searches for galaxies at high redshift can also be applied at intermediate redshifts. This implies that the integrated contribution of galaxies to the UV cosmic background at z around 1.2 is less than 15%, and may be less than 2%.
119 - D. Schaerer 2018
We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity, star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46% discovered recentl y. The Space Telescope Imaging Spectrograph spectrum shows strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(CIII])$=11.7 pm 2.9 AA$ rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, $log(xi_{rm ion}^0)=25.56$ erg$^{-1}$ Hz, comparable to that of other recently discovered $z sim 0.3-0.4$ LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing $xi_{rm ion}^0$ with increasing CIII] 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.
We propose to infer ionising continuum leaking properties of galaxies by looking at their Lyman-alpha line profiles. We carry out Lyman-alpha radiation transfer calculations in two models of HII regions which are porous to ionising continuum escape: 1) the so-called density bounded media, in which massive stars produce enough ionising photons to keep the surrounding interstellar medium transparent to the ionising continuum, i.e almost totally ionised, and 2) riddled ionisation-bounded media, surrounded by neutral interstellar medium, but with holes, i.e. with a covering factor lower than unity. The Lyman-alpha spectra emergent from these configurations have distinctive features: 1) a classical asymmetric redshifted profile in the first case, but with a small shift of the maximum of the profile compare to the systemic redshift (Vpeak < 150 km/s); 2) a main peak at the systemic redshift in the second case (Vpeak = 0 km/s), with, as a consequence, a non-zero Lyman-alpha flux bluewards the systemic redshift. Assuming that in a galaxy leaking ionising photons, the Lyman-alpha component emerging from the leaking star cluster(s) dominates the total Lyman-alpha spectrum, the Lyman-alpha shape may be used as a pre-selection tool to detect Lyman continuum (LyC) leaking galaxies, in objects with well determined systemic redshift, and high spectral resolution Lyman-alpha spectra (R >= 4000). The examination of a sample of 10 local starbursts with high resolution HST-COS Lyman-alpha spectra and known in the literature as LyC leakers or leaking candidates, corroborates our predictions. Observations of Lyman-alpha profiles at high resolution should show definite signatures revealing the escape of Lyman continuum photons from star-forming galaxies.
126 - Hidenobu Yajima 2012
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev olution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l < 912 angstrom) from galaxies by combining a cosmological hydrodynamic simulation with three-dimensional multi-wavelength radiative transfer calculations. The galaxies are simulated in a box of 5^3 h^-3 Mpc^3 with high resolutions using the Aquila initial condition which reproduces a Milky Way-like galaxy at redshift z=0. We find that the escape fraction (fesc) of these different photons shows a complex dependence on redshift and galaxy properties: fesc(Lya) and fesc(UV) appear to evolve with redshift, and they show similar, weak correlations with galaxy properties such as mass, star formation, metallicity, and dust content, while fesc(Ion) remains roughly constant at ~ 0.2 from z ~ 0 - 10, and it does not show clear dependence on galaxy properties. fesc(Lya) correlates more strongly with fesc(UV) than with fesc(Ion). In addition, we find a relation between the emergent Lya luminosity and the ionizing photon emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z > 6, but they can maintain the ionization of IGM at z ~ 0 - 5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا