ﻻ يوجد ملخص باللغة العربية
We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity, star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46% discovered recently. The Space Telescope Imaging Spectrograph spectrum shows strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(CIII])$=11.7 pm 2.9 AA$ rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, $log(xi_{rm ion}^0)=25.56$ erg$^{-1}$ Hz, comparable to that of other recently discovered $z sim 0.3-0.4$ LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing $xi_{rm ion}^0$ with increasing CIII] 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.
We report the discovery of J0121+0025, an extremely luminous and young star-forming galaxy (M_UV = -24.11, log[L_Lya / erg s^-1] = 43.8) at z = 3.244 showing copious Lyman continuum (LyC) leakage (f_esc,abs ~ 40%). High signal-to-noise ratio rest-fra
Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum ($Gamma = 1.6 pm 0.5$) and a high luminosity ($(9 pm 2) times
We report on the detection of the [CII] 157.7 $mu$m emission from the Lyman break galaxy (LBG) MACS0416_Y1 at z = 8.3113, by using the Atacama Large Millimeter/submillimeter Array (ALMA). The luminosity ratio of [OIII] 88 $mu$m (from previous campaig
Escaping Lyman continuum photons from galaxies likely reionized the intergalactic medium at redshifts $zgtrsim6$. However, the Lyman continuum is not directly observable at these redshifts and secondary indicators of Lyman continuum escape must be us
Compact starburst galaxies are thought to include many or most of the galaxies from which substantial Lyman continuum emission can escape into the intergalactic medium. Li and Malkan (2018) used SDSS photometry to find a population of such starburst