ﻻ يوجد ملخص باللغة العربية
We present optical linear polarimetry in the line of sight to HH135/HH136. The polarimetry of the field stars reveals two populations: one corresponds to a foreground interstellar component; the other originates in the interstellar medium in the vicinity of the Herbig-Haro pair and, therefore, can be used to study the magnetic field in the star forming region. Its direction is aligned with the jet of HH135/HH136, which could be an indication that the interstellar magnetic field is important in the outflow collimation. The interstellar magnetic field magnitude was estimated to be of order 90 uG. According to recent numerical simulations, an interstellar magnetic field of such strength can be important in the definition of the outflow direction. There is also evidence that the associated dark cloud has an elongation parallel to the magnetic field. Our image polarimetry of the extended emission associated with HH135/HH136 shows a centro-symmetric pattern pointing to the knot E of HH136. Previous near infrared polarimetry traces a different illumination center, namely IRAS 11101-5829 - the probable exciting source of the system. This discrepancy can be explained if the YSO emission is completely blocked in optical wavelengths and the dominant optical source in the region is the knot E, whose nature is uncertain. A discussion of the spectral energy distributions of HH136-E and IRAS 11101-5829 is presented.
For an affine toric variety $spec(A)$, we give a convex geometric interpretation of the Gerstenhaber product $HH^2(A)times HH^2(A)to HH^3(A)$ between the Hochschild cohomology groups. In the case of Gorenstein toric surfaces we prove that the Gersten
HH 175 is an isolated Herbig-Haro object seen towards the B35 cloud in the lambda Ori region. We use deep Subaru 8m interference filter images and Spitzer images to show that HH 175 is a terminal shock in a large collimated outflow from the nearby em
We present high angular resolution, high sensitivity 8.46 GHz (3.6 cm) radio continuum observations made toward the core of the HH~92 outflow with the Very Large Array in 2002-2003 and with the Expanded Very Large Array in 2011. We detect a group of
The future proton-proton collider (FCC-hh) will deliver collisions at a center of mass energy up to $sqrt{s}=100$ TeV at an unprecedented instantaneous luminosity of $L=3~10^{35}$ cm$^{-2}$s$^{-1}$, resulting in extremely challenging radiation and lu
The Future Circular Collider study is exploring possible designs of circular colliders for the post-LHC era, as recommended by the European Strategy Group for High Energy Physics. One such option is FCC-hh, a proton-proton collider with a centre-of-m