ﻻ يوجد ملخص باللغة العربية
The Future Circular Collider study is exploring possible designs of circular colliders for the post-LHC era, as recommended by the European Strategy Group for High Energy Physics. One such option is FCC-hh, a proton-proton collider with a centre-of-mass energy of 100 TeV. The experimental insertion regions are key areas defining the performance of the collider. This paper presents the first insertion region designs with a complete assessment of the main challenges, as collision debris with two orders of magnitude larger power than current colliders, beam-beam interactions in long insertions, dynamic aperture for optics with peak $beta$ functions one order of magnitude above current colliders, photon background from synchrotron radiation and cross talk between the insertion regions. An alternative design avoiding the use of crab cavities with a small impact on performance is also presented.
In this chapter we explore a few examples of physics opportunities using the existing chain of accelerators at CERN, including potential upgrades. In this context the LHC ring is also considered as a part of the injector system. The objective is to f
In the context of design studies for future $pp$ colliders, we present a set of predictions for average soft-QCD event properties for $pp$ collisions at $E_mathrm{CM} = 14$, $27$, and $100$ TeV. The current default Monash 2013 tune of the PYTHIA 8.2
The future 100 TeV FCC-hh hadron collider will give access to rare but clean final states which are out of reach of the HL-LHC. One such process is the $Zh$ production channel in the $( ubar{ u} / ell^{+}ell^{-})gammagamma$ final states. We study the
In the Hadron machine option, proposed in the context of the Future Circular Colliders (FCC) study, the dipole field quality is expected to play an important role, as in the LHC. A preliminary evaluation of the field quality of dipoles, based on the
The increase in luminosity and center of mass energy at the FCC-hh will open up new clean channels where BSM contributions are enhanced at high energy. In this paper we study one such channel, $Wh to ell ugammagamma$. We estimate the sensitivity to t