ﻻ يوجد ملخص باللغة العربية
A new method of searching for dark matter in the form of weakly interacting massive particles (WIMP) has been developed with the direct detection of the low energy nuclear recoils observed in a massive target (ultimately many tons) of ultra pure Liquid Argon at 87 K. A high selectivity for Argon recoils is achieved by the simultaneous observation of both the VUV scintillation luminescence and of the electron signal surviving columnar recombination, extracted through the liquid-gas boundary by an electric field. First physics results from this method are reported, based on a small 2.3 litre test chamber filled with natural Argon and an accumulated fiducial exposure of about 100 kg x day, supporting the future validity of this method with isotopically purified 40Ar and for a much larger unit presently under construction with correspondingly increased sensitivities.
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation
Tokyo group has performed first underground dark matter search experiment in 2001 through 2002 at Kamioka Observatory(2700m.w.e). The detector is eight LiF bolometers with total mass 168g aiming for the direct detection of WIMPs via spin-dependent in
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (W
Time modulations at per mil level have been reported to take place in the decay constant of several nuclei with period of one year (most cases) but also of about one month or one day. On the other hand, experiments with similar or better sensitivity
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr tar