ترغب بنشر مسار تعليمي؟ اضغط هنا

Occurrence of concurrent `orthogonal polarization modes in the Lienard-Wichert field of a rotating superluminal source

119   0   0.0 ( 0 )
 نشر من قبل Ludwig Trepl
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the Lienard-Wiechert field of a rotating superluminal point source numerically and show that this radiation field has the following intrinsic characteristics. (i) It is sharply focused along a narrow, rigidly rotating spiral-shaped beam that embodies the cusp of the envelope of the emitted wave fronts. (ii) It consists of either one or three concurrent polarization modes (depending on the relative positions of the observer and the cusp) that constitute contributions to the field from differing retarded times. (iii) Two of the modes are comparable in strength at both edges of the signal and dominate over the third everywhere except in the middle of the pulse. (iv) The position angle of the total field swings across the beam by as much as 180$^circ$. (v) The position angles of its two dominant modes remain approximately orthogonal throughout their excursion across the beam. Given the fundamental nature of the Lienard-Wiechert field, the coincidence of these characteristics with those of the radio emission that is received from pulsars is striking.

قيم البحث

اقرأ أيضاً

In an earlier paper, we introduced a model for pulsars in which non-radial oscillations of high spherical degree (el) aligned to the magnetic axis of a spinning neutron star were able to reproduce subpulses like those observed in single-pulse measure ments of pulsar intensity. The model did not address polarization, which is an integral part of pulsar emission. Observations show that many pulsars emit radio waves that appear to be the superposition of two linearly polarized emission modes with orthogonal polarization angles. In this paper, we extend our model to incorporate linear polarization. As before, we propose that pulsational displacements of stellar material modulate the pulsar emission, but now we apply this modulation to a linearly-polarized mode of emission, as might be produced by curvature radiation. We further introduce a second polarization mode, orthogonal to the first, that is modulated by pulsational velocities. We combine these modes in superposition to model the observed Stokes parameters in radio pulsars.
Contrary to mechanical waves, the two-slit interference experiment of single photons shows that the behavior of classical electromagnetic waves corresponds to the quantum mechanical one of single photons, which is also different from the quantum-fiel d-theory behavior such as the creations and annihilations of photons, the vacuum fluctuations, etc. Owing to a purely quantum effect, quantum tunneling particles including tunneling photons (evanescent modes) can propagate over a spacelike interval without destroying causality. With this picture we conclude that the superluminality of evanescent modes is a quantum mechanical rather than a classical phenomenon.
73 - Bethan Cropp 2010
Strong-field gravitational plane waves are often represented in either the Rosen or Brinkmann forms. These forms are related by a coordinate transformation, so they should describe essentially the same physics, but the two forms treat polarization st ates quite differently. Both deal well with linear polarizations, but there is a qualitative difference in the way they deal with circular, elliptic, and more general polarization states. In this article we will describe a general algorithm for constructing arbitrary polarization states in the Rosen form.
234 - Z.-Q. Shen 2001
We present the results of 5 GHz VLBI observations of a compact steep spectrum source 3C 138. The data are consistent with the western end being the location of the central activity. The observed offset between different frequencies in the central reg ion of 3C 138 can be accounted for by a frequency dependent shift of the synchrotron self-absorbed core. Our new measurements confirm the existence of a superluminal motion, but its apparent velocity of 3.3c is three times slower than the reported one. This value is consistent with the absence of parsec-scale counter-jet emission in the inner region, but seems still too high to allow the overall counter-jet to be seen in terms of Doppler boosting of an intrinsically identical jet. Either an interaction of jet with central dense medium, or an intrinsically asymmetrical jet must be invoked to reconcile the detected superluminal speed with the observed large scale asymmetry in 3C 138.
We present an analysis of transfer of quantum information between the collective spin degrees of freedom of a large ensemble of two-level systems and a single central qubit. The coupling between the central qubit and the individual ensemble members m ay be varied and thus provides access to more than a single storage mode. Means to store and manipulate several independent qubits are derived for the case where the variation in coupling strengths does not allow addressing of orthogonal modes of the ensemble. While our procedures and analysis may apply to a number of different physical systems, for concreteness, we study the transfer of quantum states between a single electron spin and an ensemble of nuclear spins in a quantum dot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا