ﻻ يوجد ملخص باللغة العربية
We present results from a survey of weak MgII absorbers in the VLT/UVES spectra of 81 QSOs obtained from the ESO archive. In this survey, we identified 112 weak MgII systems within the redshift interval 0.4 < z < 2.4 with 86% completeness down to a rest-frame equivalent width of W_r(2796) = 0.02A, covering a cumulative redshift path length of deltaZ=77.3. From this sample, we estimate that the number of weak absorbers per unit redshift dN/dz increases from 1.06 +/- 0.04 at <z>=1.9 to 1.76 +/- 0.08 at <z>=1.2 and thereafter decreases to 1.51 +/- 0.09 at <z>=0.9 and 1.06 +/- 0.10 at <z>=0.6. Thus we find evidence for an evolution in the population of weak MgII absorbers, with their number density peaking at z=1.2. We also determine the equivalent width distribution of weak systems at <z>=0.9 and <z>=1.9. At 0.4 < z < 1.4, there is evidence for a turnover from a powerlaw of the form n(W_r) propto W_r^{-1.04} at W_r(2796) < 0.1A. This turnover is more extreme at 1.4 < z < 2.4, where the equivalent width distribution is close to an extrapolation of the exponential distribution function found for strong MgII absorbers. Based on these results, we discuss the possibility that some fraction of weak MgII absorbers, particularly single cloud systems, are related to satellite clouds surrounding strong MgII systems. These structures could also be analogs to Milky Way high velocity clouds. In this context, the paucity of high redshift weak MgII absorbers is caused by a lack of isolated accreting clouds on to galaxies during that epoch.
Using a sample of almost 7000 strong MgII absorbers with 0.4 < z < 2.2 detected in the SDSS DR4 dataset, we investigate the gravitational lensing and dust extinction effects they induce on background quasars. After carefully quantifying several selec
The largest known structure in the high redshift universe is mapped by at least 18 quasars and spans ~5 deg x 2.5 deg on the sky, with a quasar spatial overdensity of 6-10 times above the mean. This large quasar group provides an extraordinary labora
Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses
We have carried out a deep narrow-band imaging survey of six fields with heavy-element quasar absorption lines, using the Goddard Fabry-Perot (FP) system at the Apache Point Observatory (APO) 3.5-meter telescope. The aim of these observations was to
We report 4 new detections of 21-cm absorption from a systematic search of 21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40 quasars having 42 i