ﻻ يوجد ملخص باللغة العربية
We report on observations of the sky region around the unidentified TeV gamma-ray source TeV J2032+4130 carried out with the Whipple Observatory 10 m atmospheric Cherenkov telescope for a total of 65.5 hrs between 2003 and 2005. The standard two-dimensional analysis developed by the Whipple collaboration for a stand-alone telescope reveals an excess in the field of view at a pre-trials significance level of 6.1 standard deviations. The measured position of this excess is alpha(2000) =20 h 32 m 27 s, delta(2000) = 41 deg 39 min 17 s. The estimated integral flux for this gamma-ray source is about 8% of the Crab-Nebula flux. The data are consistent with a point-like source. Here we present a detailed description of the standard two-dimensional analysis technique used for the analysis of data taken with the Whipple Observatory 10 m telescope and the results for the TeV J2032+4130 campaign. We include a short discussion of the physical mechanisms that may be responsible for the observed gamma-ray emission, based on possible association with known astrophysical objects, in particular Cygnus OB2.
We observed the first known very high energy (VHE) gamma-ray emitting unidentified source, TeV J2032+4130, for 94 hours with the MAGIC telescope. The source was detected with a significance of 5.6 sigma. The flux, position, and angular extension are
(abridged) The first unidentified very high energy gamma ray source (TeV J2032+4130) in the Cygnus region has been the subject of intensive search for a counterpart source at other wavelengths. A deep ($approx 50$ ksec) exposure of TeV J2032+4130 wit
TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E $>$ 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discover
The mysterious very high energy gamma-ray source, TeV J2032+4130, is coincident with the powerful Cygnus OB2 stellar association, though a physical association between the two remains uncertain. It is possible that the detected very high energy photo
We present an analysis of Chandra ACIS observations of the field of TeV J2032+4130, the first unidentified TeV source, detected serendipitously by HEGRA. This deep (48.7 ksec) observation of the field follows up on an earlier 5 ksec Chandra directors