ﻻ يوجد ملخص باللغة العربية
We observed the first known very high energy (VHE) gamma-ray emitting unidentified source, TeV J2032+4130, for 94 hours with the MAGIC telescope. The source was detected with a significance of 5.6 sigma. The flux, position, and angular extension are compatible with the previous ones measured by the HEGRA telescope system five years ago. The integral flux amounts to (4.5+-0.3stat+-0.35sys)x10^{-13} ph cm$^{-2}$ s$^{-1}$ above 1 TeV. The source energy spectrum, obtained with the lowest energy threshold to date, is compatible with a single power law with a hard photon index of Gamma=-2.0+-0.3stat+-0.2sys.
(abridged) The first unidentified very high energy gamma ray source (TeV J2032+4130) in the Cygnus region has been the subject of intensive search for a counterpart source at other wavelengths. A deep ($approx 50$ ksec) exposure of TeV J2032+4130 wit
TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E $>$ 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discover
We report on observations of the sky region around the unidentified TeV gamma-ray source TeV J2032+4130 carried out with the Whipple Observatory 10 m atmospheric Cherenkov telescope for a total of 65.5 hrs between 2003 and 2005. The standard two-dime
The mysterious very high energy gamma-ray source, TeV J2032+4130, is coincident with the powerful Cygnus OB2 stellar association, though a physical association between the two remains uncertain. It is possible that the detected very high energy photo
We present an analysis of Chandra ACIS observations of the field of TeV J2032+4130, the first unidentified TeV source, detected serendipitously by HEGRA. This deep (48.7 ksec) observation of the field follows up on an earlier 5 ksec Chandra directors