ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of HESS J1813-178 reveal a composite Supernova remnant

321   0   0.0 ( 0 )
 نشر من قبل Stefan Funk
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present X-ray and 12CO(J=1-0) observations of the very-high-energy (VHE) gamma-ray source HESS J1813-178 with the aim of understanding the origin of the gamma-ray emission. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission from this object with greater precision than previous studies. NANTEN 12CO(J=1-0) data are used to search for correlations of the gamma-ray emission with molecular clouds which could act as target material for gamma-ray production in a hadronic scenario. The NANTEN 12CO(J=1-0) observations show a giant molecular cloud of mass 2.5 10^5 M$_{sun}$ at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the gamma-ray source and its surroundings. The X-ray data show a highly absorbed non-thermal X-ray emitting object coincident with the previously known ASCA source AX J1813-178 showing a compact core and an extended tail towards the north-east, located in the centre of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that the object is very likely to be a composite SNR. We discuss the scenario in which the gamma-rays originate in the shell of the SNR and the one in which they originate in the central object. We demonstrate, that in order to connect the core X-ray emission to the VHE gamma-ray emission electrons have to be accelerated to energies of at least 1 PeV.

قيم البحث

اقرأ أيضاً

Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol ved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
We present the serendipitous discovery of a young stellar cluster in the Galactic disk at l=12deg. Using Keck/NIRSPEC, we obtained high- and low-resolution spectroscopy of several stars in the cluster, and we identified one red supergiant and two blu e supergiants. The radial velocity of the red supergiant provides a kinematic cluster distance of 4.7pm0.4 kpc, implying luminosities of the stars consistent with their spectral types. Together with the known Wolf-Rayet star located 2.4 from the cluster center, the presence of the red supergiant and the blue supergiants suggests a cluster age of 6-8 Myr, and an initial mass of 2000 Msun. Several stars in the cluster are coincident with X-ray sources, including the blue supergiants and the Wolf-Rayet star. This is indicative of a high binary fraction, and is reminiscent of the massive young cluster Westerlund 1. The cluster is coincident with two supernova remnants, SNR G12.72-0.0 and G12.82-0.02, and the highly magnetized pulsar associated with the TeV gamma-ray source HESS J1813-178. The mixture of spectral types suggests that the progenitors of these objects had initial masses of 20 - 30 Msun.
76 - A. Decourchelle 2000
We present the observation of the Tycho supernova remnant obtained with the EPIC and RGS instruments onboard the XMM-Newton satellite. We compare images and azimuthally averaged radial profiles in emission lines from different elements (silicon and i ron) and different transition lines of iron (Fe L and Fe K). While the Fe XVII L line and Si XIII K line images are globally spatially coincident, the Fe K emission clearly peaks at a smaller radius, indicating a higher temperature toward the reverse shock. This is qualitatively the profile expected when the reverse shock, after travelling through the outer power-law density profile, has entered the central plateau of the ejecta. The high energy continuum map has an overall smooth distribution, with a similar extent to the radio emission. Its radial profile peaks further out than the lines emission. Brighter and harder continuum regions are observed with a rough bipolar symmetry in the eastern and western edges. The spectral analysis of the southeastern knots supports spatial variations of the relative abundance of silicon and iron, which implies an incomplete mixing of the silicon and iron layers.
201 - Jared Siegel 2020
W49B is a supernova remnant (SNR) discovered over 60 years ago in early radio surveys. It has since been observed over the entire wavelength range, with the X-ray morphology resembling a centrally-filled SNR. The nature of its progenitor star is stil l debated. Applying Smoothed Particle Inference techniques to analyze the X-Ray emission from W49B, we characterize the morphology and abundance distribution over the entire remnant. We also infer the density structure and derive the mass of individual elements present in the plasma. The morphology is consistent with an interaction between the remnant and a dense medium along the eastern edge, and some obstruction towards the west. We find a total mass of 130 $(pm 16)$ M$_{odot}$ and an estimated ejecta mass of 1.2 $(pm 0.2)$ M$_{odot}$. Comparison of the inferred abundance values and individual element masses with a wide selection of SN models suggests that deflagration-to-detonation (DDT) Type Ia models are the most compatible, with Fe abundance being the major discriminating factor. The general agreement between our abundance measurements and those from previous studies suggests that disagreement between various authors is more likely due to the choice of models used for comparison, rather than the abundance values themselves. While our abundance results lean toward a Type Ia origin, ambiguities in the interpretation of various morphological and spectral characteristics of W49B do not allow us to provide a definitive classification.
87 - D. Onic 2019
In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9+3.1, is estimated to be 0.42$pm$0.03 and the integrated flux density at 1GHz to be around 2.7Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density N_H~0.80x$10^{22}$ cm$^{-2}$ and fitted temperatures spanning the range kT~0.14-0.23keV for all of the regions. The derived electron number densities n_e for the whole SNR and the rims are also roughly comparable (ranging from ~$0.20f^{-1/2}$ cm$^{-3}$ to ~$0.40f^{-1/2}$ cm$^{-3}$, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~$46f^{-1/2}M_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا