ﻻ يوجد ملخص باللغة العربية
W49B is a supernova remnant (SNR) discovered over 60 years ago in early radio surveys. It has since been observed over the entire wavelength range, with the X-ray morphology resembling a centrally-filled SNR. The nature of its progenitor star is still debated. Applying Smoothed Particle Inference techniques to analyze the X-Ray emission from W49B, we characterize the morphology and abundance distribution over the entire remnant. We also infer the density structure and derive the mass of individual elements present in the plasma. The morphology is consistent with an interaction between the remnant and a dense medium along the eastern edge, and some obstruction towards the west. We find a total mass of 130 $(pm 16)$ M$_{odot}$ and an estimated ejecta mass of 1.2 $(pm 0.2)$ M$_{odot}$. Comparison of the inferred abundance values and individual element masses with a wide selection of SN models suggests that deflagration-to-detonation (DDT) Type Ia models are the most compatible, with Fe abundance being the major discriminating factor. The general agreement between our abundance measurements and those from previous studies suggests that disagreement between various authors is more likely due to the choice of models used for comparison, rather than the abundance values themselves. While our abundance results lean toward a Type Ia origin, ambiguities in the interpretation of various morphological and spectral characteristics of W49B do not allow us to provide a definitive classification.
We present an XMM-Newton observation of the highly polarized low-surface brightness supernova remnant G107.5-1.5, discovered with the Canadian Galactic Plane Survey (CGPS). We do not detect diffuse X-ray emission from the SNR and set an upper limit o
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resol
(Abridged) We present a spatial and spectral X-ray analysis of the Galactic supernova remnant (SNR) G352.7-0.1 using archival data from observations made with XMM-Newton and Chandra. Prior X-ray observations of this SNR revealed a thermal center-fill
Aims. We report the first detailed X-ray study of the supernova remnant (SNR) G304.6+0.1, achieved with the XMM-Newton mission. Methods. The powerful imaging capability of XMM-Newton was used to study the X-ray characteristics of the remnant at diffe
The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Diffuse X-ray emission from the interior of the SNR can reveal