ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating the COSMOS: The fraction of merging galaxies at high redshift

60   0   0.0 ( 0 )
 نشر من قبل Pawel Kampczyk
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Kampczyk




اسأل ChatGPT حول البحث

Simulations of nearby (0.015 < z < 0.025) SDSS galaxies have been used to reproduce as accurately as possible the appearance that they would have on COSMOS ACS images if they had been observed at z ~ 0.7 and z ~ 1.2. By adding the SDSS galaxies to random locations in the COSMOS images, we simulate the effects of chance superpositions of high redshift galaxies with unrelated foreground or background objects. We have used these simulated images, together with those of real COSMOS galaxies at these same redshifts, to undertake a blind morphological classification of galaxies to identify those that appear to be undergoing mergers and thus to estimate the change in merger fraction with redshift. We find that real mergers are harder to recognize at high redshift, and also that the chance superposition of unrelated galaxies often produces the appearance of mergers where in reality none exists. In particular, we estimate that 1.5 - 2.0% of objects randomly added to ACS images are misclassified as mergers due to projection with unrelated objects, and as a result, that 40% of the apparent mergers in COSMOS at z=0.7 are likely to be spurious. We find that the fraction of galaxies undergoing mergers increases as (1+z)^3.8+/-1.2 to z ~ 0.7 and that this trend appears to continue to z = 1.2. Merger candidates at z ~ 0.7 are bluer than the parent population, especially when the statistical effects of the chance projections are accounted for. Merger candidates are more asymmetric than the population as a whole, and are often associated with irregular morphology. Nevertheless, the majority (~60%) of the merger candidates appear to be associated with spiral galaxies although in this case we cannot correct for the effects of chance projections.

قيم البحث

اقرأ أيضاً

Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to stan dard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5<z<10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, alpha ~-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z=5 (z=7-8), implying an early (z>9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (M_UV < -18) show metallicities ~0.1 Zsun even at z=7-8. Most of the simulated galaxies at z~7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50%) of the ionizing photons is produced by objects populating the faint-end of the LF (M_UV < -16), which JWST will resolve up to z=7.3. PopIII stars continue to form essentially at all redshifts; however, at z=6 (z=10) the contribution of Pop III stars to the total galactic luminosity is always less than 5% for M_UV < -17 (M_UV < -16). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.
Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the to tal luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the $Infrared$ $Array$ $Satellite$ Revised Bright Galaxy Sample or Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the $Spitzer$ Interacting Galaxies Survey, mostly early-stage. We perform identical SED modeling of simulated mergers to validate our methods, and we supplement the SED data with mid-IR spectra of diagnostic lines obtained with $Spitzer$ InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to 91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.
65 - Neil Trentham 2004
Star formation happens in two types of environment: ultraviolet-bright starbursts (like 30 Doradus and HII galaxies at low redshift and Lyman-break galaxies at high redshift) and infrared-bright dust-enshrouded regions (which may be moderately star-f orming like Orion in the Galaxy or extreme like the core of Arp 220). In this work I will estimate how many of the stars in the local Universe formed in each type of environment, using observations of star-forming galaxies at all redshifts at different wavelengths and of the evolution of the field galaxy population.
Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately M*_UV ~ -21. We investigate this apparent non-evolution by examin ing a sample of 178 bright, M_UV < -21 galaxies at z=4 to 7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that M*_UV galaxies at z=4-7 have similar stellar masses of log(M/Msol)=9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z=4-7 are less massive and have younger inferred ages than similarly bright galaxies at z=2-3, even though the two populations have similar star formation rates and levels of dust attenuation. We match the abundances of these bright z=4-7 galaxies to halo mass functions from the Bolshoi Lambda-CDM simulation to estimate the halo masses. We find that the typical halo masses in ~M*_UV galaxies decrease from log(M_h/Msol)=11.9 at z=4 to log(M_h/Msol)=11.4 at z=7. Thus, although we are studying galaxies at a similar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in units of the cosmic mean Omega_b/Omega_m rises from 5.1% at z=4 to 11.7% at z=7; this evolution is significant at the ~3-sigma level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.
Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star form ation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9 to z~0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological K-correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا