ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the Fraction of Clumpy Galaxies at 0.2<z<1.0 in the COSMOS field

161   0   0.0 ( 0 )
 نشر من قبل Katsuhiro Murata
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9 to z~0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological K-correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.



قيم البحث

اقرأ أيضاً

The Lyman continuum (LyC) flux escaping from high-z galaxies into the IGM is a fundamental quantity to understand the physical processes involved in the reionization epoch. We have investigated a sample of star-forming galaxies at z~3.3 in order to s earch for possible detections of LyC photons escaping from galaxy halos. UV deep imaging in the COSMOS field obtained with the prime focus camera LBC at the LBT telescope was used together with a catalog of spectroscopic redshifts obtained by the VIMOS Ultra Deep Survey (VUDS) to build a sample of 45 galaxies at z~3.3 with L>0.5L*. We obtained deep LBC images of galaxies with spectroscopic redshifts in the interval 3.27<z<3.40 both in the R and deep U bands. A sub-sample of 10 galaxies apparently shows escape fractions>28% but a detailed analysis of their properties reveals that, with the exception of two marginal detections (S/N~2) in the U band, all the other 8 galaxies are most likely contaminated by the UV flux of low-z interlopers located close to the high-z targets. The average escape fraction derived from the stacking of the cleaned sample was constrained to fesc_rel<2%. The implied HI photo-ionization rate is a factor two lower than that needed to keep the IGM ionized at z~3, as observed in the Lyman forest of high-z QSO spectra or by the proximity effect. These results support a scenario where high redshift, relatively bright (L>0.5L*) star-forming galaxies alone are unable to sustain the level of ionization observed in the cosmic IGM at z~3. Star-forming galaxies at higher redshift and at fainter luminosities (L<<L*) can be the major contributors to the reionization of the Universe only if their physical properties are subject to rapid changes from z~3 to z~6-10. Alternatively, ionizing sources could be discovered looking for fainter sources among the AGN population at high-z.
Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demo graphics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)
We investigate the close environment of 203 Spitzer 24 micron-selected sources at 0.6<z<1.0 using zCOSMOS-bright redshifts and spectra of I<22.5 AB mag galaxies, over 1.5 sq. deg. of the COSMOS field. We quantify the degree of passivity of the LIRG a nd ULIRG environments by analysing the fraction of close neighbours with Dn(4000)>1.4. We find that LIRGs at 0.6<z<0.8 live in more passive environments than those of other optical galaxies that have the same stellar mass distribution. Instead, ULIRGs inhabit more active regions (e.g. LIRGs and ULIRGs at 0.6<z<0.8 have, respectively, (42.0 +/- 4.9)% and (24.5 +/- 5.9)% of neighbours with Dn (4000)>1.4 within 1 Mpc and +/- 500 km/s). The contrast between the activities of the close environments of LIRGs and ULIRGs appears especially enhanced in the COSMOS field density peak at z~0.67, because LIRGs on this peak have a larger fraction of passive neighbours, while ULIRGs have as active close environments as those outside the large-scale structure. The differential environmental activity is related to the differences in the distributions of stellar mass ratios between LIRGs/ULIRGs and their close neighbours, as well as in the general local density fields. At 0.8<z<1.0, instead, we find no differences in the environment densities of ULIRGs and other similarly massive galaxies, in spite of the differential activities. We discuss a possible scenario to explain these findings.
We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts ($z<0.3$). We combine this sample with new estimates of the major-merger pair fraction for stellar mass selected galaxies at $z<0.8$, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift $K-$band selected sample using photometry from the UKIRT Infrared Deep Sky Survey (UKIDSS) and the Two Micron All Sky Survey (2MASS) in the $K-$band ($sim 2.2~mu$m). Combined with all available spectroscopy, our $K-$band selected sample contains $sim 250,000$ galaxies and is $> 90%$ spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in $K-$band luminosity. We find the major-merger pair fraction to be flat at $sim 2%$ as a function of $K-$band luminosity for galaxies in the range $10^8 - 10^{12} L_{odot}$, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major-merger pair fraction is $sim 40-50%$ higher than previous estimates drawn from $K-$band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample we find a much flatter evolution ($m = 0.7 pm 0.1$), in the relation $f_{rm{pair}} propto (1+z)^m$, than indicated in many previous studies. These results indicate that a typical $Lsim L^*$ galaxy has undergone $sim 0.2-0.8$ major mergers since $z=1$ (depending on the assumptions of merger timescale and percentage of pairs that actually merge).
We investigate evolution of clumpy galaxies with the Hubble Space Telescope (HST) samples of ~17,000 photo-z and Lyman break galaxies at z~0-8. We detect clumpy galaxies with off-center clumps in a self-consistent algorithm that is well tested with p revious study results, and measure the number fraction of clumpy galaxies at the rest-frame UV, f_clumpy^UV. We identify an evolutionary trend of f_clumpy^UV over z~0-8 for the first time: f_clumpy^UV increases from z~8 to z~1-3 and subsequently decreases from z~1 to z~0, which follows the trend of Madau-Lilly plot. A low average Sersic index of n~1 is found in the underlining components of our clumpy galaxies at z~0-2, indicating that typical clumpy galaxies have disk-like surface brightness profiles. Our f_clumpy^UV values correlate with physical quantities related to star formation activities for star-forming galaxies at z~0-7. We find that clump colors tend to be red at a small galactocentric distance for massive galaxies with log(M_*/M_sun)>~11. All of these results are consistent with a picture that a majority of clumps form in the violent disk instability and migrate into the galactic centers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا