ﻻ يوجد ملخص باللغة العربية
It is well known that cosmic rays (CRs) contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting that they may play an important role in regulating star formation during the formation and evolution of galaxies. We will present a novel numerical treatment of the physics of CRs and its implementation in the parallel smoothed particle hydrodynamics (SPH) code GADGET-2. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. In simulations of galaxy formation, we find that CRs can significantly reduce the star formation efficiencies of small galaxies. This effect becomes progressively stronger towards low mass scales. In cosmological simulations of the formation of dwarf galaxies at high redshift, we find that the total mass-to-light ratio of small halos and the faint-end of the luminosity function are affected. In high resolution simulations of galaxy clusters, we find lower contributions of CR pressure, due to the smaller CR injection efficiencies at low Mach number flow shocks inside halos, and the softer adiabatic index of CRs, which disfavours them when a composite of thermal gas and CRs is adiabatically compressed. Within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading to an enhanced compressibility of the central intra-cluster medium, an effect that increases the central density and pressure of the gas. While the X-ray luminosity in low mass cool core clusters is boosted, the integrated Sunyaev-Zeldovich effect is only slightly changed. The resolved Sunyaev-Zeldovich maps, however, show a larger variation with an increased central flux decrement.
It is well known that cosmic rays (CRs) contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting that they may play an important role in regulating star formation during the formation and evolution of galaxies
We investigate a numerical model for AGN feedback where for the first time a relativistic particle population in AGN-inflated bubbles is followed within a full cosmological context. In our high-resolution simulations of galaxy cluster formation, we a
It is now possible for hydrodynamical simulations to reproduce a representative galaxy population. Accordingly, it is timely to assess critically some of the assumptions of traditional semi-analytic galaxy formation models. We use the Eagle simulatio
Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resol
We study the imprints of AGN feedback and physical viscosity on the properties of galaxy clusters using hydrodynamical simulation models carried out with the TreeSPH code GADGET-2. Besides self-gravity of dark matter and baryons, our approach include