ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotational velocities of A-type stars. III. Velocity distributions

94   0   0.0 ( 0 )
 نشر من قبل Frederic Royer
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aim - In this work, a sample of vsini of B9 to F2-type main sequence single stars has been built from highly homogeneous vsini parameters determined for a large sample cleansed from objects presenting the Am and Ap phenomenon as well as from all known binaries. The aim is to study the distributions of rotational velocities in the mass range of A-type stars for normal single objects. Methods - Robust statistical methods are used to rectify the vsini distributions from the projection effect and the error distribution. The equatorial velocity distributions are obtained for an amount of about 1100 stars divided in six groups defined by the spectral type, under the assumption of randomly orientated rotational axes. Results - We show that late B and early A-type main-sequence stars have genuine bimodal distributions of true equatorial rotational velocities due probably to phenomena of angular momentum loss and redistribution the star underwent before reaching the main sequence. A striking lack of slow rotators is noticed among intermediate and late A-type stars. The bimodal-like shape of their true equatorial rotational velocity distributions could be due to evolutionary effects.



قيم البحث

اقرأ أيضاً

We have measured the projected rotational velocities (vsini) in a number of symbiotic stars and M giants using high resolution spectroscopic observations. On the basis of our measurements and data from the literature, we compare the rotation of mass- donors in symbiotics with vsini of field giants and find that: (1) the K giants in S-type symbiotics rotate at vsini>4.5 km/s, which is 2-4 times faster than the field K giants; (2) the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. Statistical tests show that these differences are highly significant: p-value < 0.001 in the spectral type bins K2III-K5III, M0III-M6III, and M2III-M5III; (3) our new observations of D-type symbiotics also confirm that they are fast rotators. As a result of the rapid rotation, the cool giants in symbiotics should have 3-30 times larger mass loss rates. Our results suggest also that bipolar ejections in symbiotics seem to happen in objects where the mass donors rotate faster than the orbital period. All spectra used in our series of papers can be obtained upon request from the authors.
Stellar rotation is a crucial parameter driving stellar magnetism, activity and mixing of chemical elements. Furthermore, the evolution of stellar rotation is coupled to the evolution of circumstellar disks. Disk-braking mechanisms are believed to be responsible for rotational deceleration during the accretion phase, and rotational spin-up during the contraction phase after decoupling from the disk for fast rotators arriving at the ZAMS. We investigate the projected rotational velocities vsini of a sample of young stars with respect to the stellar mass and disk evolutionary state to search for possible indications of disk-braking mechanisms. We analyse the stellar spectra of 220 nearby (mostly <100pc) young (2-600 Myr) stars for their vsini, stellar age, Halpha emission, and accretion rates. The stars have been observed with FEROS and HARPS in La Silla, Chile. The spectra have been cross-correlated with appropriate theoretical templates. We build a new calibration to be able to derive vsini values from the cross-correlated spectra. Stellar ages are estimated from the LiI equivalent width at 6708 Ang. The equivalent width and width at 10% height of the Halpha emission are measured to identify accretors and used to estimate accretion rates. The vsini is then analysed with respect to the evolutionary state of the circumstellar disks to search for indications of disk-braking mechanisms in accretors. We find that the broad vsini distribution of our targets extends to rotation velocities of up to more than 100 km/s and peaks at a value of 7.8+-1.2 km/s, and that ~70% of our stars show vsini<30 km/s. Furthermore, we can find indications for disk-braking in accretors and rotational spin-up of stars which are decoupled from their disks. In addition, we show that a number of young stars are suitable for precise radial-velocity measurements for planet-search surveys.
Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, $v_esin i$, of $sim$330 O-type objects, i.e. $sim$210 spectroscopic single stars and $sim$110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30,Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the $v_esin i$ distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100,$rm{km s^{-1}}$. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300,$rm{km s^{-1}}$, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part -- and could potentially be completely due -- to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.
We provide atmospheric parameters and rotational velocities of a large sample (~400) of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Comparison of the rotational velocities wi th evolutionary tracks suggest that the end of core hydrogen burning occurs later than currently predicted. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities or position on the H-R diagram are predicted. We suggest that blue-loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample we find that (at 3sigma confidence level) massive stars (above 8Msun) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the vsini distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution which is a Gaussian peaking at 175km/s (SMC) and 100km/s (LMC). We find that in NGC346 in the SMC, the 10-25Msun main-sequence stars appear to rotate faster than their higher mass counterparts. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25Msun stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14Msun at low metallicities. (abridged).
Elemental abundances of carbon, nitrogen, oxygen, magnesium, aluminum, and silicon are presented for a sample of twelve rapidly rotating OB star (v sin i > 60 km s^-1) members of the Cep OB2, Cyg OB3 and Cyg OB7 associations. The abundances are deriv ed from spectrum synthesis, using both LTE and non-LTE calculations. As found in almost all previous studies of OB stars, the average abundances are slightly below solar, by about 0.1 to 0.3 dex. In the case of oxygen, even with the recently derived low solar abundances the OB stars are closer to, but still below, the solar value. Results for the 9 Cep OB2 members in this sample can be combined with results published previously for 8 Cep OB2 stars with low projected rotational velocities to yield the most complete set of abundances, to date, for this particular association. These abundances provide a clear picture of both the general chemical and individual stellar evolution that has occurred within this association. By placing the Cep OB2 stars studied in an HR diagram we identify the presence of two distinct age subgroups, with both subgroups having quite uniform chemical abundances. Two stars are found in the older subgroup that show significant N/O overabundances, with both stars being two of the most massive, the most evolved, and most rapidly rotating of the members studied in Cep OB2. These characteristics of increased N abundances being tied to high mass, rapid rotation, and an evolved phase are those predicted from models of rotating stars which undergo rotationally driven mixing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا