ﻻ يوجد ملخص باللغة العربية
We have measured the projected rotational velocities (vsini) in a number of symbiotic stars and M giants using high resolution spectroscopic observations. On the basis of our measurements and data from the literature, we compare the rotation of mass-donors in symbiotics with vsini of field giants and find that: (1) the K giants in S-type symbiotics rotate at vsini>4.5 km/s, which is 2-4 times faster than the field K giants; (2) the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. Statistical tests show that these differences are highly significant: p-value < 0.001 in the spectral type bins K2III-K5III, M0III-M6III, and M2III-M5III; (3) our new observations of D-type symbiotics also confirm that they are fast rotators. As a result of the rapid rotation, the cool giants in symbiotics should have 3-30 times larger mass loss rates. Our results suggest also that bipolar ejections in symbiotics seem to happen in objects where the mass donors rotate faster than the orbital period. All spectra used in our series of papers can be obtained upon request from the authors.
Aim - In this work, a sample of vsini of B9 to F2-type main sequence single stars has been built from highly homogeneous vsini parameters determined for a large sample cleansed from objects presenting the Am and Ap phenomenon as well as from all know
Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, $v_esin i$, of $sim$330 O-type objects, i.e. $sim$210
Stellar rotation is a crucial parameter driving stellar magnetism, activity and mixing of chemical elements. Furthermore, the evolution of stellar rotation is coupled to the evolution of circumstellar disks. Disk-braking mechanisms are believed to be
We have obtained high-resolution spectra of 89 M dwarf members of the Pleiades and Hyades and have derived radial velocities, H-alpha equivalent widths, and spectroscopic rotational velocities for these stars. Typical masses of the newly-observed Ple
Aims: Projected rotational velocities (vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5