ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL

82   0   0.0 ( 0 )
 نشر من قبل Emrah Kalemci
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the polarization of the prompt gamma-ray emission from GRBs can significantly improve our understanding of both the GRB emission mechanisms, as well as the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100--350 keV energy band, our analysis yields a polarization fraction from this GRB of 99 +- 33 %. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g. lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis.



قيم البحث

اقرأ أيضاً

90 - S. McGlynn 2007
The spectrometer aboard INTEGRAL, SPI, has the capability to detect the signature of polarised emission from a bright gamma-ray source. GRB 041219a is the most intense burst localised by INTEGRAL and is an ideal candidate for such a study. Polarisati on can be measured using multiple events scattered into adjacent detectors because the Compton scatter angle depends on the polarisation of the incoming photon. A search for linear polarisation in the most intense pulse of duration 66 seconds and in the brightest 12 seconds of GRB 041219a was performed in the 100-350keV, 100-500keV and 100keV-1MeV energy ranges. The multiple event data from the spectrometer was analysed and compared with the predicted instrument response obtained from Monte-Carlo simulations using the GEANT 4 INTEGRAL mass model. The chi^2 distribution between the real and simulated data as a function of the percentage polarisation and polarisation angle was calculated for all three energy ranges. The degree of linear polarisation in the brightest pulse of duration 66s was found to be 63+/-31% at an angle of 70+/-14 degrees in the 100-350keV energy range. The degree of polarisation was also constrained in the brightest 12s of the GRB and a polarisation fraction of 96+/-40% at an angle of 60+/-14 degrees was determined over the same energy range. However, despite extensive analysis and simulations, a systematic effect that could mimic the weak polarisation signal could not be definitively excluded. Our results over several energy ranges and time intervals are consistent with a polarisation signal of about 60% at a low level of significance (2 sigma). We conclude that the procedure described here demonstrates the effectiveness of using SPI as a polarimeter, and is a viable method of measuring polarisation levels in intense gamma--ray bursts.
We report the polarization measurement in prompt $gamma$-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter (GAP) aboard the small solar power sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the p rompt emission with 99.9% ($3.5 sigma$) confidence level, and the average polarization degree ($Pi$) of $27 pm 11$% with 99.4% ($2.9 sigma$) confidence level. Here the quoted errors are given at 1 $sigma$ confidence level for two parameters of interest. The systematic errors have been carefully included in this analysis, unlike any previous reports. Such a high $Pi$ can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of $sim Gamma^{-1}$. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more details.
We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $sim1%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.
The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and textit{Swift}-BAT. We detail the results of joint spe ctral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.79 times 10^{-4}$ erg/cm$^2$ (20 keV--10 MeV). Using the spectroscopic redshift $z=1.548$, we find that the burst is consistent with the ``Amati $E_{peak,i}-E_{iso}$ correlation. Assuming a jet opening angle derived from broadband modeling of the burst afterglow, GRB 070125 is a significant outlier to the ``Ghirlanda $E_{peak,i}-E_gamma$ correlation. Its collimation-corrected energy release $E_gamma = 2.5 times 10^{52}$ ergs is the largest yet observed.
69 - D. R. Willis 2005
The true nature of the progenitor to GRBs remains elusive; one characteristic that would constrain our understanding of the GRB mechanism considerably is gamma-ray polarimetry measurements of the initial burst flux. We present a method that interpret s the prompt GRB flux as it Compton scatters off the Earths atmosphere, based on detailed modelling of both the Earths atmosphere and the orbiting detectors. The BATSE mission aboard the textit{CGRO} monitored the whole sky in the 20 keV - 1 MeV energy band continuously from April 1991 until June 2000. We present the BATSE Albedo Polarimetry System (BAPS), and show that GRB 930131 and GRB 960924 provide evidence of polarisation in their prompt flux that is consistent with degrees of polarisation of $Pi>35$% and $Pi>50$% respectively. While the evidence of polarisation is strong, the method is unable to strongly constrain the degree of polarisation beyond a systematics based estimation. Hence the implications on GRB theory are unclear, and further measurements essential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا