ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the Prompt Gamma-Ray Emission of GRB 070125

107   0   0.0 ( 0 )
 نشر من قبل Eric Bellm
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and textit{Swift}-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.79 times 10^{-4}$ erg/cm$^2$ (20 keV--10 MeV). Using the spectroscopic redshift $z=1.548$, we find that the burst is consistent with the ``Amati $E_{peak,i}-E_{iso}$ correlation. Assuming a jet opening angle derived from broadband modeling of the burst afterglow, GRB 070125 is a significant outlier to the ``Ghirlanda $E_{peak,i}-E_gamma$ correlation. Its collimation-corrected energy release $E_gamma = 2.5 times 10^{52}$ ergs is the largest yet observed.



قيم البحث

اقرأ أيضاً

We report the polarization measurement in prompt $gamma$-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter (GAP) aboard the small solar power sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the p rompt emission with 99.9% ($3.5 sigma$) confidence level, and the average polarization degree ($Pi$) of $27 pm 11$% with 99.4% ($2.9 sigma$) confidence level. Here the quoted errors are given at 1 $sigma$ confidence level for two parameters of interest. The systematic errors have been carefully included in this analysis, unlike any previous reports. Such a high $Pi$ can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of $sim Gamma^{-1}$. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more details.
69 - D. R. Willis 2005
The true nature of the progenitor to GRBs remains elusive; one characteristic that would constrain our understanding of the GRB mechanism considerably is gamma-ray polarimetry measurements of the initial burst flux. We present a method that interpret s the prompt GRB flux as it Compton scatters off the Earths atmosphere, based on detailed modelling of both the Earths atmosphere and the orbiting detectors. The BATSE mission aboard the textit{CGRO} monitored the whole sky in the 20 keV - 1 MeV energy band continuously from April 1991 until June 2000. We present the BATSE Albedo Polarimetry System (BAPS), and show that GRB 930131 and GRB 960924 provide evidence of polarisation in their prompt flux that is consistent with degrees of polarisation of $Pi>35$% and $Pi>50$% respectively. While the evidence of polarisation is strong, the method is unable to strongly constrain the degree of polarisation beyond a systematics based estimation. Hence the implications on GRB theory are unclear, and further measurements essential.
We present a comprehensive multiwavelength analysis of the bright, long duration gamma-ray burst GRB 070125, comprised of observations in $gamma$-ray, X-ray, optical, millimeter and centimeter wavebands. Simultaneous fits to the optical and X-ray lig ht curves favor a break on day 3.78, which we interpret as the jet break from a collimated outflow. Independent fits to optical and X-ray bands give similar results in the optical bands but shift the jet break to around day 10 in the X-ray light curve. We show that for the physical parameters derived for GRB 070125, inverse Compton scattering effects are important throughout the afterglow evolution. While inverse Compton scattering does not affect radio and optical bands, it may be a promising candidate to delay the jet break in the X-ray band. Radio light curves show rapid flux variations, which are interpreted as due to interstellar scintillation, and are used to derive an upper limit of $2.4 times 10^{17}$ cm on the radius of the fireball in the lateral expansion phase of the jet. Radio light curves and spectra suggest a high synchrotron self absorption frequency indicative of the afterglow shock wave moving in a dense medium. Our broadband modeling favors a constant density profile for the circumburst medium over a wind-like profile ($R^{-2}$). However, keeping in mind the uncertainty of the parameters, it is difficult to unambiguously distinguish between the two density profiles. Our broadband fits suggest that event is a burst with high radiative efficiency ($> 60 %$).
Gamma-ray bursts (GRBs) were first detected thanks to their prompt emission, which was the only information available for decades. In 2010, while the high-energy prompt emission remains the main tool for the detection and the first localization of GR B sources, our understanding of this crucial phase of GRBs has made great progress. We discuss some recent advances in this field, like the occasional detection of the prompt emission at all wavelengths, from optical to GeV; the existence of sub-luminous GRBs; the attempts to standardize GRBs; and the possible detection of polarization in two very bright GRBs. Despite these advances, tantalizing observational and theoretical challenges still exist, concerning the detection of the faintest GRBs, the panchromatic observation of GRBs from their very beginning, the origin of the prompt emission, or the understanding of the physics at work during this phase. Significant progress on this last topic is expected with SVOM thanks to the observation of dozens of GRBs from optical to MeV during the burst itself, and the measure of the redshift for the majority of them. SVOM will also change our view of the prompt GRB phase in another way. Within a few years, the sensitivity of sky surveys at optical and radio frequencies, and outside the electromagnetic domain in gravitational waves or neutrinos, will allow them to detect several new types of transient signals, and SVOM will be uniquely suited to identify which of these transients are associated with GRBs. This radically novel look at GRBs may elucidate the complex physics producing these bright flashes.
The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, often fit with empirical functions. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray Burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, covering an energy range of 0.001 keV to 100 keV. We determine a photometric redshift of z=3.1+/-0.1 with a line-of-sight extinction of A_V~0 mag, utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma~250 and an emission radius of R<10^18 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with b1=-0.3+/-0.1, b2=0.6+/-0.1 that has a break at E=6.6+/-0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of E_a<6 keV suggest a magnetic field strength of B~10^5 G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of ~2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of ~100, suggesting an afterglow component is dominating the emission. We present GRB 121217A one of the few GRBs for which there are multi-wavelength observations of the prompt-emission period and show that it can be understood with a synchrotron radiation model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا