ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bulge-Halo Connection in Galaxies: A Physical Interpretation of the Vcirc-sigma_0 Relation

30   0   0.0 ( 0 )
 نشر من قبل Stephane Courteau
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the dependence of the ratio of a galaxys circular velocity, Vcirc, to its central velocity dispersion, sigma_0, on morphology, or equivalently total light concentration. Such a dependence is expected if light traces the mass. Over the full range of galaxy types, masses and brightnesses, and assuming that the gas velocity traces the circular velocity, we find that galaxies obey the relation log(Vcirc/sigma_0)= 0.63-0.11*C28 where C28=5log(r80/r20) and the radii are measured at 80 percent and 20 percent of the total light. Massive galaxies scatter about the Vcirc = sqrt(2)*sigma_0 line for isothermal stellar systems. Disk galaxies follow the simple relation Vcirc/sigma_0=2(1-B/T), where B/T is the bulge-to-total light ratio. For pure disks, C28~2.8, B/T -> 0, and Vcirc~=2*sigma_0. Self-consistent equilibrium galaxy models from Widrow & Dubinski (2005) constrained to match the size-luminosity and velocity-luminosity relations of disk galaxies fail to match the observed Vcirc/sigma_0 distribution. Furthermore, the matching of dynamical models for Vcirc(r)/sigma(r) with observations of dwarf and elliptical galaxies suffers from limited radial coverage and relatively large error bars; for dwarf systems, however, kinematical measurements at the galaxy center and optical edge suggest Vcirc(Rmax) > 2*sigma_0 (in contrast with past assumptions that Vcirc = sqrt(2)*sigma_0 for dwarfs.) The Vcirc-sigma_0-C28 relation has direct implications for galaxy formation and dynamical models, galaxy scaling relations, the mass function of galaxies, and the links between respective formation and evolution processes for a galaxys central massive object, bulge, and dark matter halo.


قيم البحث

اقرأ أيضاً

Courteau et al. (2007a) reported on the dependence of the ratio of a galaxys maximum circular velocity, Vcirc, to its central velocity dispersion, sigma0, on morphology, or equivalently total light concentration. This Vcirc-sigma0 concentration relat ion, which involves details about the local and global galaxy physics, poses a fundamental challenge for galaxy structure models. Furthermore, not only must these models reproduce the Vcirc-sigma0 relation and its various dependences, they must simultaneously match other fundamental scaling relations such as the velocity-size-luminosity and color-luminosity relations of galaxies. We focus here on the interpretation of parameters that enter the Vcirc-sigma0 relation to enable proper data-model comparisons and follow-up studies by galaxy modelers and observers.
The global colors of galaxies have recently been shown to follow bimodal distributions. Galaxies separate into a ``red sequence, populated prototypically by early-type galaxies, and a ``blue cloud, whose typical objects are late-type disk galaxies. I ntermediate-type (Sa-Sbc) galaxies populate both regions. It has been suggested that this bimodality reflects the two-component nature of disk-bulge galaxies. However, it has now been established that there are two types of bulges: ``classical bulges that are dynamically hot systems resembling (little) ellipticals, and ``pseudobulges, dynamically cold, flattened, disk-like structures that could not have formed via violent relaxation. Therefore thee question is whether at types Sa-Sbc, where both bulge types are found, the red-blue dichotomy separates galaxies at some value of disk-to-bulge ratio, $B/T$, or, whether it separates galaxies of different bulge type, irrespective of their $B/T$. We identify classical bulges and pseudobulges morphologically with HST images in a sample of nearby galaxies. Detailed surface photometry reveals that: (1) The red -- blue dichotomy is a function of bulge type: at the same $B/T$, pseudobulges are in globally blue galaxies and classical bulges are in globally red galaxies. (2) Bulge type also predicts where the galaxy lies in other (bimodal) global structural parameters. (3) Hence, the red -- blue dichotomy is not due to decreasing bulge prominence alone, and the bulge type of a galaxy carries significance for the galaxys evolutionary history ... (Abridged)
We use SHARK, a semi-analytic galaxy formation model, to investigate the physical processes involved in dictating the shape, scatter and evolution of the HI-halo mass relation at $0leq z leq 2$. We compare SHARK with HI clustering and spectral stacki ng of the HI-halo mass relation derived from observations finding excellent agreement with the former and a deficiency of HI in SHARK at $M_{rm vir}approx 10^{12-13} M_{odot}$ in the latter, but otherwise great agreement below and above that mass threshold. In SHARK, we find that the HI mass increases with the halo mass up to a critical mass of $approx 10^{11.8} M_{odot}$; between $sim 10^{11.8}-10^{13}M_{odot}$, the scatter in the relation increases by 0.7 dex and the HI mass decreases with the halo mass on average; at $M_{rm vir} geq 10^{13} M_{odot}$, the HI content continues to increase with halo mass. We find that the critical halo mass of $approx 10^{12} M_{odot}$ is largely set by feedback from Active Galactic Nuclei (AGN), and the exact shape and scatter of the HI-halo mass relation around that mass is extremely sensitive to how AGN feedback is modelled, with other physical processes playing a less significant role. We determine the main secondary parameters responsible for the scatter of the HI-halo mass relation, namely the halo spin parameter at $M_{rm vir}leq 10^{11.8} M_{odot}$, and the fractional contribution from substructure to the total halo mass for $M_{rm vir}geq 10^{13} M_{odot}$. The scatter at $10^{11.8}<M_{rm vir}<10^{13} M_{odot}$ is best described by the black-hole-to-stellar mass ratio of the central galaxy, reflecting the AGN feedback relevance. We present a numerical model to populate dark matter-only simulations with HI at $0leq z leq 2$ based solely on halo parameters that are measurable in such simulations.
To break the degeneracy among galactic stellar components, we extract kinematic structures using the framework described in Du et al. (2019, 2020). For example, the concept of stellar halos is generalized to weakly-rotating structures that are compos ed of loosely bound stars, which can hence be associated to both disk and elliptical type morphologies. By applying this method to central galaxies with stellar mass $10^{10-11.5} M_odot$ from the TNG50 simulation, we identify three broadly-defined types of galaxies: ones dominated by disk, by bulge, or by stellar halo structures. We then use the simulation to infer the underlying connection between the growth of structures and physical processes over cosmic time. Tracing galaxies back in time, we recognize three fundamental regimes: an early phase of evolution ($zgtrsim2$), and internal and external (mainly mergers) processes that act at later times. We find that disk- and bulge-dominated galaxies are not significantly affected by mergers since $zsim2$; the difference in their present-day structures originates from two distinct evolutionary pathways, extended vs. compact, that are likely determined by their parent dark matter halos; i.e., nature. On the other hand, slow rotator elliptical galaxies are typically halo-dominated, forming by external processes (e.g. mergers) in the later phase, i.e., nurture. This picture challenges the general idea that elliptical galaxies are the same objects as classical bulges. In observations, both bulge- and halo-dominated galaxies are likely to be classified as early-type galaxies with compact morphology and quiescent star formation. However, here we find them to have very different evolutionary histories.
We use empirical techniques to interpret the near-infrared colours of a sample of 5800 galaxies drawn from Sloan Digital Sky Survey (SDSS) main spectroscopic sample with YJHK photometry from the UK Infrared Deep Sky Survey (UKIDSS) data release one. We study correlations between near-IR colours measured within SDSS fibre and physical parameters derived from the spectra. These parameters include specific star formation rate, stellar age, metallicity and dust attenuation. All correlations are analyzed for samples of galaxies that are closely matched in redshift, in stellar mass and in concentration index. Whereas more strongly star-forming galaxies have bluer optical colours, the opposite is true at near-IR wavelengths -- galaxies with higher specific star formation rate have redder near-IR colours. This result agrees qualitatively with the predictions of models in which Thermally Pulsing Asymptotic Giant Branch (TP-AGB) stars dominate the H and K-band light of a galaxy following a burst of star formation. We also find a surprisingly strong correlation between the near-IR colours of star-forming galaxies and their dust attenuation as measured from the Balmer decrement. Unlike optical colours, however, near-IR colours exhibit very little dependence on galaxy inclination. This suggests that the correlation of near-IR colours with dust attenuation arises because TP-AGB stars are the main source of dust in the galaxy. Finally, we compare the near-IR colours of the galaxies in our sample to the predictions of three different stellar population models: the Bruzual & Charlot 2003 model, a preliminary version of a new model under development by Charlot & Bruzual, which includes a new prescription for AGB star evolution, and the Maraston 2005 model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا